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1. The Objectives of the Research Program

The broad objective of this research has been to derive
mathematical analysis and design techniques for asynchronous
dynamic systems with hybrid (continuous/discrete) state
spaces, with specific application to the synthesis of
finite-state controllers for continuous state plants. Long
term applications to such application intensive problems as
robotics or manufacturing engineering have formed a
motivating tool for these efforts.

This research program has had a long history and, prior
to this contract, was funded by AFSC under contract number
F49620-80-C-0002. This prior contract focused on
essentially the same issues, but for synchronous systems.
As with the prior contract the current research program has
been characterized by a need to re-examine certain
fundamental concepts of system theory in a non-traditional
setting. This has, at times, appeared to have slowed down
the pursuit of its principal research objectives, as well
as hamper the publication of its results. Nonetheless, a
firm theoretical groundwork has been laid for future
research, and this groundwork comprises a creative fusion of-.
ideas that is both innovative and significant.

The typical finite-state control environment, often
realized by a microprocessor-based controller and analog-to-
digital, and digital-to-analog converters, is a hybrid
environment. The state space of the plant is usually
continuous in nature, and the plant's state space may indeed
evolve continuously in time as well. The controller, by its
very nature, operates over a finite state space, with a
discrete evolution of this state in time. When the control
action takes place asynchronously, driven by the occurence
of external events, the times of event occurence themselves
enter into the system modeling problem.

The convenience of developing software for
microprocessors has led to a proliferation of ad hoc methods
for designing controllers, and, worse, has led to a false
sense of security about correcting easily any problems that
might arise in their performance. Such problems certainly
do exist, ranging from "straightforward" ones such as
accuracy problems arising from roundoff errors, to more
subtle ones involving pseudo-chaotic behavior and other
cycling phenomena in the plant's state space. This project
has viewed the absence of a fundamental characterization of PIP%
the dynamics of these hybrid systems as the underlying cause
for these problems. Thus a call for fundamental system-
theoretic research was made.

In broadest terms this research program has thus been
aimed towards modeling and understanding the nature of
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asynchronous hybrid feedback systems. It has been
concerned with addressing three general, related questions:

Question 1: How does one characterize the (hybrid) finite-
state controller as a dynamic system, operating

ply asynchronously in time?

Question 2: How does one model the interfaces between the
plant, on the one hand, and the compensator, on the other
hand? (We term these the coder and the decoder)

Question 3: How does one use this acquired understanding to .
effectively design compensators directly, and not indirectly
as finite approximations to more conventional continuous
compensators?

To address these questions new tools for modeling and '.-

analysis had to be developed, and were. These tools
involve generalizations of classical automata theory to real

number alphabets and the application of semigroup theory to
asynchronous dynamics. The results of these endeavors are
discussed in Section 2.

As the project unfolded it became apparent that most of
the effort would of necessity be directed towards addressing
the first two of these questions. They had to be addressed
first, and lack of time prevented substantial progress from
being made on Question 3.

The research into answering Questions 1 and 2 has
uncovered exciting areas of general research in hybrid
system theory and in the theory of asynchronous systems.

-. ,~
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2. Status of the Research Program

2.0 Introduction

The fundamental goals of the research program have been
stated above. It became apparent quite early on that much,-P
if not all of the time, would of necessity be spent in
developing key concepts as opposed to designing in detail
specific controllers. The research efforts in this respect
must be regarded as being successful. Key structures and
models in the hybrid system environment have been
identified. A firm groundwork for future work in this area
has been laid because of this. Much of this work has been
published, submitted for publication, or presented at
professional meetings. References to this material replace
substantive discussion below, since copies of this material
have either been sent, or will be sent concurrently with
this document (as Appendices), to the Program Manager.

•F 2.1 Simple Asynchronous Machines

In dealing with asynchronous finite-state controllers
it is necessary to understand asynchronous finite automata
from a viewpoint that is both fundamental and general.
Traditional approaches to characterizing asynchronous ''

finite-state automata have generally been concerned with the
state transitions of such systems (and problems related to
such transitions, such as races), but not with a
fundamental analysis of the evolution of the state as a
finite-valued function in time. These issues were addressed
in a direct manner wherein the role of event occurence time ...,
is explicit, and wherein physical contraints can be imposed
in a direct, manageable way.

2.1.1 The Model
a%

As detailed in one of our recent papers I the simple
asynchronous machine (SAM) is a particular model of a more

general finite automaton based upon semigroup properties
that explicitly deals with the time of an event as well as

kN its effect on the future behavior of the machine. It
consists of a finite number of digital function generators
(DFGs) that are called into play as input changes occur.
These generators model asynchronous patterns of state ...
values, and play a role in SAM characterization analogous to
the impulse response functions of linear system theory. The
SAM model makes minimal a priori assumptions concerning
temporal spacing between events or continuity of system ".
state at times of input transition. This generality allows

%'.-

LkA.
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us to address fundamental realization issues for SAMs, which
has been done and documented 1 -

The key concept in the SAM model is that each input
transition triggers a "cascade" of subsequent state
transitions which is pre-determined by the machine structure
-- these cascades are embodied in the DFGs. The cascades ,,
may be overwritten by cascades due to subsequent input
transitions, so that the output timing reflects a sequence
of cascades keyed to input transition times. Various

-. architectural configurations for generating the fundamental
state transition sequences were explored and are described
in the cited references. The "hybrid stack" model of the
DFG is used in the simulator described in the following
section.

2.1.2 The Simulator

It was important to validate the utility of the SAM
model, for abstraction merely for the sake of abstraction is
of little value. A simulator was developed for this purpose
and is detailed in the Appendix of this report. Building
upon an earlier incomplete version written in Pascal, the
working simulator is written in GWBASIC for the AT&T 6300
Personal Computer and exploits the powerful graphics of this
version of Basic to allow meaningful examples of SAMs to be
developed, simulated and displayed. The hybrid stack model

* - of the DFG is used in this simulator and it has been run on
a variety of examples. Its use in modeling the behavior of
a ripple counter and a UART are reported as representative
examples in the Appendix to this report. A copy of the
User's Manual, Programmert s Manual, with listings, as well
as a diskette, accompany this report.

The current simulator is limited to single input,
"' single output systems. Work to extend the simulator's

capabilities to handle multiple input, multiple output SAMs
is currently under way, as part of a Master's thesis
project. This thesis will be completed by June, 1966, and
a copy will be sent to AFSC upon its completion. (See
Section 4. for further details.) The multiple input SAM
model opens up the door for some important practical
questions involving how the SAM is to process transitions on
its several input lines that are nearly, but not exactly,
concurrent.

2.1.3 Physical Constraint Modeling

The essential strength of the SAM formulation is in
its ability to model the kinds of physical constraints

r typically present in the discrete-control environment:

minimal signal processing times, minimum intervals between
events, minimal duration for compensator inputs and outputs, , .
and so on. Through the imposition of such constraints on
individual digital function generators and on the class of

.-
4% -. >.



digital function generators as a whole, one can begin to
incoporate these constraints explicitly, rather than
implicitly, into the SAM model 1. Work in this area has
just begun. Current research is underway, as part of the
above referenced Master's Thesis project.

It is important that such constraints be explicit -.
rather than implicit. To understand the most general
interconnections of SAMs, including specifically feedback ,,
connections, it is most important that one not limit in
advance implicitly the rapid state transition rates that
can arise in such configurations. Rather one must be able
to model them theoretically and then re-examine them in the

. -light of realistic physical processing constraints.
Once one has addressed the issue of physical constraint

modeling attention can turn to such related significant
issues of how to synthesize SAMs using commercially
available components and how to employ modern techniques of
design automation to expedite such syntheses.

2.1.4 Real-Time Multitasking Systems

The representation of asynchronous multitasking systems
offers a specific example of the phenomena modelled by the
more abstract asynchronous machines considered above.
Here the interest is in in process synchronization by means ,

I of an appropriate communication channel. Early work in this
research program addressed such issues; they are explored in
more detail in the cited reference.

2.2 Asynchronous Time Signals

In the asynchronous discrete-control setting it is easy
to see that the coder inputs and outputs are, in effect,
piecewise-constant time signals, with transition times
between pieces occuring at event-driven times. It was felt

-' that an understanding of this class of time functions was
essential to characterizing the overall dynamics of the
asynchronous control system.

Research activity in this area assumed several forms,
and ties in with the aforementioned simple asynchronous
machine models, for which signal ranges are assumed to be
finite. In the discussion below the acronym "ATF" stands
for "asynchronous time-function".

2.2.1 Generative Models

These efforts here focused on the development of
generative models for the class of ATFs. Two approaches to
this modelling problem were pursued. In the first approach,

i -% %
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" when the range space of the functions is a finite set, the
digital function generator (DFG) was proposed as a general
purpose scheme for generating asynchronous functions of '

finite range. The role of the DFG in the architecture of
the simple asynchronous machine has already been noted. As
a "stand alone" device its implementation is of particular
interest. The DFG may be implemented by using either a
"hybrid stack" architecture or by using a set of
independently recursively generated breakpoints 1.

A more general mechanism for generating ATFs with
arbitrary ranges was developed .-O *.This scheme consists
architecturally of a value generator, a switching time

. generator, and a signal synthesizer. The value generator
produces the range values assumed by an ATF; the switching
time generator generates the breakpoints (transition times)
of the function, and the signal synthesizer then outputs the
resulting asynchronous waveform in real-time. This general
model is a recent one that was created towards the end of
the contract period in an effort to encapsulate under one
umbrella both the various DFG models earlier discussed, and
the more general non-finite-range class of signals, and to
allow for general physically-imposed constraints to be
placed upon ATFs. It also is general enough to allow for
the generation of stochastic asynchronous time signals.

* 2.2.2 Recursive Models

Some consideration was given to the distribution of the
transition points of ATFs, since, particularly in the case
of recursively generated DFGs, there is an ergodic flavor to
this problem. Previously unfunded work of Dr. Kaliski was
extended to develop more precise nations of orbital behavior
and distributions, notions that might prove useful in
understanding and characterizing transition point
distribution somewhat better -

SThe key theme of the above developments is that the
transition times may be viewed as generated recursively
under the iterates of an appropriate timing generaztor.
This ties in as well with the above cited themes of
independently recursively generated breakpoints.

2.2.3 Physical Constraint Modeling

The essential problem, from the point-of-view of
modelling realistic plants and controllers, is to identify
and model various physical constraints that fall upon the
plant-coder-controller-decoder ensemble. Physical
constraints manifest themselves in a variety of ways,
particularly when the issue of asynchronous systems and
transition times are discussed. Physical systems cannot

*" instantaneously respond to signal changes, nor, it may be
argued, can they recognize signal changes that occur too

"* rapidly. They seem to require a minimal "energy content" in
signals to respond to them, and thus not only are signal

0 . ....:..:,
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amplitudes, but signal breakpoint distributions,

constrained.
Efforts have begun to grapple with this problem and

4 the continuing research efforts of Northeastern graduate
students will address these issues. When resolved one may

.- in turn apply such models to the above described generative
schemes for ATFs.

2.3 Asynchronous Coders

In the asynchronous control setting plant outputs are
sampled at irregular, event-driven times. A fundamental
question of this research program has been to understand how
to incorporate such times in the coder (and decoder) models
successfully developed for the synchronous case under the
earlier project funding • The general problem of modeling
these interface signals has been described above. In what

follows discussion turns to how the interfaces themselves
can incorporate time. The view that asynchronous coder
design is but an extension of synchronous coder design into
a higher-dimensional space is postulated.

Note that much of this work thus extends the previously
developed theory of coder design, particularly the
decomposition results for such coders 2 and the related
acceptor models. Also the viewpoint that coders in effect
transform sequences of points with real-valued coordinates
into sequences from a finite alphabet still is a valid one.

The research program did not deal with the issue of
decoders to any great extent. One the one hand, their
structure is far simpler than that of the coder, since they
map finite spaces into non-denumerable ones; on the other
hand, there are some very interesting practical issues in
developing decoders that are optimal, according to various
criteria.

=-.3

2.3.1 Incorporating Time into the Coder Model

By treating event occurence time as an additional coder
input -- one which always increases, of course -- one is
able to model asynchronous coders as special types of
partially-specified automata defined over real number

*" alphabets - This viewpoint is a profitable
one, for it allows the derivation of necessary and
sufficient conditions for the finite-state realizability of
asynchronous coders. One terms coders so-realizable as
finitary.

The derived theory is an extension of the previously
developed theory for synchronous coders, as noted, and
revolves around the concept of tightly structured
input/output maps. This opens up an exciting new area of

..............
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research, which one can term invariant theory for finite
automata (section 2.3.4)

2.3.2 Finitary Asynchronous Coders

Finitary coders are important architecturally since %

their use augments the complexity of the finite state part ,
of the control system and not the continuous-state part m
Such coders are always realizable as a cascade of a
memoryless quantizer (an "ordinary" analog-to-digital
converter) and a finite state machine.

It was the recognition that event-time serves to simply
ir rease the dimensionality of a coder that forms the
central theoretical accomplishment of this phase of the
research. By using sample-and-hold elements to "capture" . n..

event times the asynchronous coder can be synthesized using
the tools of synchronous coder theory. '

2.3.3 Linguistic Models for Coders

Coders, as noted, may be viewed as devices that ,
transform strings in one alphabet (a non-denumerable one),.
into strings in another alphabet. At a conceptual level,
one is then able to apply generalized tools of formal ,. '
language theory to their characterization 2. This view of
the problem is an interesting one in the search for
canonical forms for coders. Time did not permit, however,
its full exploration. By analogy with the language
hierarchies of formal language theory, one may define coders

0' of increasing complexity and power. This, too, remains an
incomplete area of research.

2.3.4 Invariants in Finite-Automata Theory

It was observed that many of the ideas of finite
automata theory do not of necessity depend upon both the 0'

state space and the input alphabet being finite. For
example, the concept of Nerode equivalence 2 can be utilized
to define finite state realizations for coders, although the
input alphabet is non-denumerable. Similarly concepts of
non-determinism in automata, and formal language equivalents
do not depend upon the finiteness of the input alphabet.

This opens the door to some basic research in abstract
automata theory. Since many techniques of discrete-
controller design indeed revolve around the concept of one
automaton controlling another, the need for such abstraction
is justified. These topics are still being investigated as

L of this writing. ',.,

2.4 Topics Not Completely Addressed

e-cp.f
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Several proposed topic areas were not addressed due to
a lack of time. This was a result of conscious decision on -
the part of the principal investigator(s).

2.4.1 Finite-State Controller Design 1.

As already noted, time did not permit a direct solution
to this problem in the asynchronous case. As discussed in
section 5, an independent activity for designing controllers

in the synchronous case, for discrete-time plants, is
currently under way. By choosing the route pursued in this
research program -- that of laying fundamental groundwork - --
- it is apparent that one principal goal for the future
must be to tie together these separate efforts to effect the
design of meaningful controllers.

2.4.2 Characterizations of Coder Behavior

One interesting area of research proposed was to try to .
develop both qualitative and quantitative schemes for

modeling the behavior of coders and to deal with such issues "
as coder similarity, and practical coder realizations.
Certainly the finitary coder model is a beginning step in
this overall goal. More definitive measures must be
defined, however, to allow one to talk about coders that ....
satisify various design and implementation criteria.

2.4.3 Feedback Connections of SAMs; Stability

Having explored the SAM model as a stand-alone device .
it is natural to deal with such questions as
interconnections of SAMs. Such structures may be series
connections, parallel connections, or, more importantly,
feedback connections. When SAMs are connected in feedback .

transitions may occur at times that are extremely close
together. It has been postulated that the SAM model is
general enough to be closed under feedback connections,
nonetheless. Future research is needed to resolve this
issue, as well the general issue of stability of SAMs, from
both a definitional and applications point-of-view.

X 2.4.4 SAMs and Quantized Continuous Systems

One interesting question that naturally evolves out of
this research effort is the following one: look at the

':2 decoder-plant-coder ensemble, in that order, as a dynamic
system. Its inputs and outputs are sequences in a finite .

set. Can we view this system as equivalent to a SAM? This, ,
in part, is tantamount to answering the related question of
under what conditions this mapping from input sequences to % ."

.**.*.**....p*- .. ,
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output sequences is finite-state realizable. These are
interesting questions that are very significant ones, for

-~ knowing that the decoder-plant-coder ensemble is effectively
a SAM reduces the question of compensator design to one of
controlling one SAM with another.
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3. Publications

TheThe following works have been published and/or
submitted for publication during the term of this contract.
The order is in each category is alphabetical, by name of
first author. The list is categorized into threecategories: papers accepted by or submitted to technical,
journals, papers presented at conferences (and appearing in

conference proceedings), and papers written as unpublished 'V
internal research memoranda.

Papers Submitted to/Accepted by Technical Journals

1) Johnson, T.L. and Kaliski, M.E., " Realization of Finite-
State Asynchronous Machines, " submitted to IEEE
Transactions on Automatic Control, April, 1983. Currently
under revision. (Abridged version presented at 22nd IEEE
Conference on Decision and Control, December, 1983, San
Antonio, TX)

* 2) Kaliski, M.E., " Finitary Coders: The Interfaces in
Finite-State Compensation Schemes, " submitted to IEEE

under revision.

3) Kaliski, M.E. and Klein, Q.L., "Behavior of a Class of
Nonlinear Discrete-Time Systems, " Journal of Computer and
System Sciences, Vol.31, No. 1, August, 1985 '..'

4) Kaliski, M.E., Kwankam, S.Y., Halpern, P. and Shulman,
D., "A Theory of Orbital Behavior in a Class of Nonlinear
Systems: Chaos and a Signature-Based Approach, accepted

,- for publication by Journal of Computer and System Sciences,
* October, 1985. To appear.

Papers Presented at Conferences

" 5) Johnson, T.L., "Multitask Control of Distributed
Processes," presented at 22nd IEEE Conference on Decision
and Control, December, 1983, San Antonio, TX.

6) Kaliski, M.E., " On Realizations of Partially-Specified
Input/Output Maps by Finite Automata, " presented at 1984
ACM Computer Science Conference, February, 19e4,
Philadelphia, PA.

7) Kaliski, M.E., Finite Automata Over Real Number
Alphabets: Some Theoretical Results and Applications,
presented at 1%95 ACM Computer Science Conference, March,
1965, New Orle.as, LA.
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8) Kaliski, M.E. and Kwankam, S.Y., Asynchronous Real-Time
Coders in the Discrete Control Environment: Generative

P Models for Input/Output Spaces, ' presented at 23rd IEEE S
Conference on Decision and Control, December, 1984, Las
Vegas, NV.

9) Kaliski, M.E. and Wimpey, D.G., "Towards a Theory of-%- I'%;-
Asynchronous , Real-Time Coders and Their Applications to
Discrete-Control of Continuous Processes, " presented at
1983 American Control Conference, June, 1983, San Francisco,
CA.

10) Kwankam, S.Y. and Kaliski, M.E., A Generative Model
for Asynchronous Finite-Valued Time Signals as Applied to
Computer-Based Process Control, " accepted for presentation
at the IFAC Symposium on Microcomputer Application in
Process Control, July, 1986, Istanbul, TURKEY.

11) Kwankam, S.Y., Kaliski, M.E., and Johnson, T.L., .

"Asynchronous Finite State Machines: Simulations with
Imposed Processing Constraints, " accepted at 1986 American
Control Conference, June, 1986, Seattle, WA.

Internal Research Memoranda

I 12) Kaliski, M.E., "Extensions of Partially-Specified
Automata Incorporating Time as an Input, Northeastern-
University Internal Memorandum, September, 1983.

13) Kaliski, M.E., " Towards a Theory of Finitary
Asynchronous Coders, " Northeastern University Internal
Memorandum, January, 1983.
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4. Personnel

V The following professional personnel have been the
primary personnel associated with this project since its
beginning in July, 1982:

Dr. Martin E. Kaliski, Professor of Electrical and Computer
Engineering, Northeastern University, Boston, MA has been a
co-principal investigator and, since July 1964, principal
investigator on this research contract.

Dr. Timothy L. Johnson, Control Technology Branch, General ..
0' Electric Corporate Research and Development, Schenectady, NY

was, while he was still with Bolt, Beranek, and Newman, Inc.
Cambridge, MA, a co-principal investigator on this project.
He has remained involved in an unfunded capacity since he
assumed his duties at General Electric in July, 1984.

Dr. David . Wimpey, a former doctoral student of Dr.
Johnson's (and supported under our previous contract) was
associated in an unfunded capacity with this project while a

- faculty member at Northeastern University in the Department
* of Electrical and Computer Engineering, from July, 1982

until his return to the Republic of South Africa in
.N September, 1983. His principal contributions were in the

. " area of coder and compensator design.

Dr. S.Y. Kwankam, a former doctoral student of Professor

* F. Kaliski's, at Northeastern, has remained involved in an
" J." informal capacity with this program since his return to the

University of Yaounde, in Cameroon in 1979. He spent the
• 0. summer of 1985 working on this project as a funded Fulbright

Scholar. His contributions were in the areas of
asynchronous machines and asynchronous time signals.

The group of professional personnel listed below have played
a smaller, but nonetheless important role, in the specific
project areas listed below. Their work has been done in an
unfunded capacity.

Dr. Karen A. Lemone, a former doctoral student of Professor .

Kaliski's, at Northeastern, is currently an Associate
Professor in the Department of Computer Science at Worcester

Polytechnic Institute, Worcester, MA. She has contributed
to the development of conceptual issues in languages defined
over real number alhpabets, with applications to coder
design.

%-

*d -7
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Quentin L. Klein, of W. Newton, MA, has worked with
Prof essor Kaliski in the study of orbital behavior in one-
dimensional nonlinear systems.

Pamela Halpern, of Comp-All Systems, Lynnfield, MA, is a
former doctoral student of Professor Kaliski"s at
Northeastern. She, too, has worked in the area of orbital
behavior studies.

David Shulman, a graduate student of Professor Kaliski's at
Northeastern University, has played a role in orbital . A,
behavior studies as well.

Andrew Miller, is an American Electronics Association
Fellow at Northeastern, and is currently working on his
Master's thesis for Professor Kaliski. He has been active
in developing the simple asynchronous machine models and
simulations described earlier.
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5. Interactions

While Dr. Johnson was with Bolt, Beranek, and Newman,
Inc. (until June, 1984) he and Dr. Kaliski met regularly
(every other week) to ensure adequate progress of the
research program. With him based at General Electric
Company in Schenectady, NY, since then, the level of
interaction has naturally decreased somewhat. Nonetheless,
regular monthly meetings which take place for an independent
joint activity of Drs. Johnson and Kaliski (see below),
provide a continuing forum for interaction on this project.

Research results have been disseminated at a variety
* of conferences around the country (section 3.), and have
. been submitted to publications appealing to both the

computer science and control systems community. This
reflects the spirit of the research as a venture into hybrid
systems theory.

Dr. Kaliski serves as a consultant to General Electric
Company, Corporate Research and Development, for Dr.
Johnson, in the general area of finite-state synchronous ".
controller algorithm design and implementation. This
problem represents the practical, computational end of the
general research area of this project. There, of course,
has been great care taken to avoid any potential.compromise
between the general research goals of this project and
those of that specific project. The essential point is that,..
this parallel activity has served to both keep interactions
in this entire area at a healthy level and has provided
means for validating theoretical constructs in a practical
context.

* L ..... :.
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6. Appendices

The following Appendices contain material not F.
previously submitted to AFSC. In addition to this material
a single diskette containing programs and data files for
the SAM simulator is being sent (along with instructions for
its use) with this report.

6.1 The Sam Simulator

The following supplementary material concerning the SAM
simulator is contained in this section:

a) User's Manual

b) Modeling of 74LS93 Binary Counter

c) Modeling of RCA CDP18S54 Programmable UART .

d) Programmer's Manual

e) Program Listings

6.2 Additional Publications

Copies of publications 3 and 4 are being submitted with
this report, as they were not previously sent to AFSC in % %
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1.0 INTRODUCTION

This User's Manual explains the operation of the
asynchronous machine simulator which runs under GW-Basic.
Since the simulator is menu-driven, most of the information _-
is self-explanatory. This manual further clarifies these

* menus and assists the user in correctly workiAn with the
simulator.

It is assumed that the user of this manual is familiar with
the paper, "Realization of Asynchronous Finite-State
Machines" by T.L. Johnson and M.E. IKaliski. This simulator

* -is essentially a direct implementation of some of the ideas
set forth in that paper.

To further clarify the information included in this manual,
refer to two examples included which are executed using this
simulator. referred to as SIMSAM (SIMulator for Simple
Asynchronous Machines). One example is the simulation of a
simple binary counter. The other is a more complex example
of a Programmable UART.

The following files must be included on the drive designated
in the simulation program as the default drive:

MAIN. BAS I.
INPOVR.BAS '.

DFGOVR. BAS
LGFOVR. BAS
RSMOVR. BAS
PLTOVR. BAS ".

See elsewhere in this manual to set the default drive.

The order of information presented in this User's Manual is
consistent with the order in which information appears in
the execution of the SIMSAM program. ,.4 -,

" .* A note regarding program output:
All text displayed by the simulator program will be indented
in this User's Manual

.4-!

* S 4 ..-
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2.0 GETTING STARTED

The SIMSAM simulator can be run on any IBM compatible pc
with 256k bytes of memory and GW-Basic (or equivalent BASIC
interpreter) running under MS-DOS.

After loading GW-Basic, load in the main module by typing:

LOAD "dd:MAIN"

where "dd" is a valid drive specification for the location
of the file "MAIN.BAS'.

Now type "RUN" to execute the main module under GW-Basic. i

After a short period of time during which the title of the
program is displayed, the following menu is displayed:

S I M S A M M E N U

1-- Enter Input Waveform
2 -- Enter Digital Function Generators .

3-- Enter Logic Function Generator-
4 -- Run simulation

-- Plot results
6 -- Set default drive
7 -- Exit

Enter selection by number " ." -,

This menu permits one to make a selection by simply typing
the number of the selection and hitting the Return key. A
brief description of each of the selections is given here.
If an invalid selection is made, the simulator emits a short
beep and the menu is redisplayed.

1 -- Enter Input Waveform . .

This choice displays another menu to enter the values of an
input waveform, either from a file or the terminal. This .
waveform can be edited while in memory, and can be saved on
the disk. -.

2-- Enter Digital Function Generators

This choice displays a menu to enter the values of digital
12 function generators. As with the input waveform, one can

load the DFGs from the terminal or a file, and perform
simple editing. ."

3-- Enter Logic Function Generator

At . -

*.. , . . ,-,- ,. . .- , } " - ,.-. '/ / / .• ' -/ ., -/ .- '-'-- , ,.. ,? -, :-'-. -. , .',% °
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This choice displays a menu to enter the values of a logic

function generator.

4 -- Run simulation

This choice allows one to ex.ecute a simulation based on the
data entered from choices 1, 2, and 3 of the SIMSAM MENU.
The simulator will not function correctly if choice 4 is

4.. made before choices 1-3. Choices 1-3 can be selected in any
order.

5 -- Plot results

This choice gives one a graphical display of any of the
waveforms, including those entered by the user and those
generated by the simulator.

6 -- Set default drive

By default, the simulator sets the default drive to "B".
This is the drive where all parts of the simulator program
are loaded from, and also where all waveforms are saved.
This choice allows one to change the default drive.

7-- Exit '-

This choice causes the program to terminate, and control is
returned to GW-Basic.

* . .'.'. . I

5'q
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3.0 ENTERING INPUT WAVEFORM

If choice 1 is selected from the SIMSAM MENU, the following
menu is displayed:

I N P U T W A V E F 0 R M M E N U

1 -- Load input waveform from file
2 __ Enter input waveform from keyboard
3 -- Modify input waveform in memory

4 ..Exit to main menu

Enter a selection by number ?

As with the SIMSAM MENU (main menu), one can make a
selection by typing the corresponding number and hitting the
Return key. Each of the choices is described in detail
here.

3.1 -- Load input waveform from file

This choice causes the screen to be cleared and the
following prompt to be displayed:

Enter M (<= 8), the number of input levels

P M=

At this prompt enter the number of levels in the input
waveform. The program checks to see that the entered value

" is within range.

V. The program then prompts for the name of the file where the
input waveform is saved with the prompt:

File name for input ?

Z-1 A valid filename for the input waveform consists of
"INPUTxx", where xx can be any two alphanumeric characters. -7
The program only distinguishes between different last two
alphanumeric characters for different input file names. The % .
program loads the specified file, and verifies that the data
in the file is consistent with the number of input levels
entered previously.

After the file has been loaded, the INPUT WAVEFORM MENU is
redisplayed. If the number of levels of the waveform read
from the file is greater than the limit entered previously,
the waveform must be entered from the keyboard.

Y. 3.2 -- Enter input waveform from keyboard

As with choice 1, this choice first prompts for the number
,.- of levels in the input waveform. After this, it asks for

the pieces of the input waveform with the dialogue:

-1.T

;V
% %k
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Enter input signal Q

Enter number of pieces, (4<= 30) 4% N

At this point one should enter the number of distinct pieces
.0 comprising the input waveform. The program verifies thatN

the upper limit is not exceeded. The program then prompts:

Enter waveform in the format: value and start time

piece # I

Here the user should enter the level of the piece of the
input waveform, and the time it starts, separated by a
comma. Normally the start time begins at time 0. The %:
program checks to see that the level value is an integer in
the range previously specified, and that the start time for

" a successive piece is greater than for the previous piece. ,

In other words, successive start times increase
monotonically.

After all the pieces of the input waveform have been
entered, the program echoes all the pieces on the screen and I.

asks for any changes with the prompt:

a changes (Y)es or (N)o

If a "Y" is entered here, the program prompts:

Enter changes in the format: piece #, value and start
time
To end enter piece # of 0

Simply enter the parameters asked for in the order

specified, separated by commas. As with all other parts of
the program, it verifies that entered data is within range.

After any and all changes have been made and the input
waveform is exactly what is desired, the program prompts to
see if the entered data is to be saved in a file:

Note that if this input function is not saved, and
the results of a run using this input are saved, such P
as result file will NOT contain information on the

input function which was used. .

Save input? Yes(Y) or No (CR) ?

°. If the input is not saved, the INPUT WAVEFORM MENU is
redisplayed. If the input is to be saved, the program
prompts:
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Enter file name under which input is to be saved
in the form 'INPUT-x', where xx are alphanumeric
characters. ?

After entering a valid filename, the input waveform data is
saved in that file on the default drive, and the INPUT
WAVEFORM MENU is redisplayed. This filename can be one I"
which has already been used, in which case the new data will
overwrite the old data in the file.

3.3 -- Modify input waveform in memory

This selection should only be chosen after loading an input
waveform from memory with selection 1. The program proceeds
through the same steps as detailed for choice 2 after the 4^
input waveform had been entered.

It prompts for which pieces of the waveform are to be
modified, and then reminds one to save the modified waveform
back out on disk.

After all modifications have been completed, the INPUT
WAVEFORM MENU is redisplayed.

3.4 -- Exit to main menu

After a correct input waveform resides in memory from one of
the other choices, this selection causes the SIMSAM MENU to
be redisplayed to load other waveforms.

.. ~
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4.0 ENTERING DIGITAL FUNCTION GENERATORS

If choice 2 from the main menu is selected, the following
menu is displayed:

D F G M E N U

1 Load DFG from file
2 -- Enter DFG from keyboard
3-- Modify DFG in memory
4 -- Exit to main menu

Enter selection by number ?
.j 10

'4 Any of the selections on this menu can be chosen by typing %

the number corresponding to the selection and hitting the %
Return key. Each of the selections is described separately %
here:

4.1 -- Load DFG from file

- After selecting this choice, the program prompts:

Enter N (<= 9), the number of states

The user is expected to enter the number of distinct states
for the simple asynchronous machine being simulated. The

- program verifies that it is within the bounds specified. It
then prompts for the file name:

File name from which DFGs are to be read.

Here, the file name is entered in the form "DFGx'" where ."x
/ can be any two alphanumeric characters. If the filename is

found on the default drive and the number of states of the %

DFGs in the file are compatible with N entered previously,
the DFG MENU is redisplayed.

. If any problems occur, the program asks that the DFGs be

- entered from the keyboard. This is explained under choice• ; .2.'";

4.2 -- Enter DFG from keyboard

With this choice, the program again prompts for the number
of states in the DFG, and checks to see that it is less than

* a predetermined maximum, then prompts:

Enter DFG for input level mm and state nn

Enter number of pieces, (= 8) "

where mm is one of the input levels in the previously
specified range, and nn is one of the SAM states. Note that
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because the number of input levels is needed, an input
waveform must have been entered prior to entering DFGs.
For each DFG, the program needs to know how many pieces
comprise the DFG for a particular input level and machine

state. After that, the program prompts:

- . Enter waveform in the format: value and start time
piece # 1 -.

Each of the pieces of a particular DFG are entered with the ..

value and start time separated by a comma. The program
checks that the value is an integer and one of the possible
state values, and that the start time is greater than zero,
and is monotonically increasing for subsequent pieces.

This continues for all possible combinations of state values
and input levels. After all DFGs have been entered, the
program prompts for any edits as explained in the next
selection. If there are no edits, or after the edits are
complete, the DFG MENU is redisplayed.

4.3 -- Modify DFG in memory

This choice should only be made after choice 1, or

alternately, if a DFG has been entered from the keyboard,
this choice is automatically made.

The program echoes each DFG and prompts for changes:
%

Any changes (Y)es or (N)o ?

a'm If there are changes they are entered in the format: piece

#, value, and start time. A piece # of C terminates the
edits for a particular DFG.

After all changes have been made for one DFG, or if no *.ft

changes are necessary, the next DFG is displayed, and a
request for edits is made.

a- After all changes have been made, the program prompts:

Are DFGs to be saved (Y)es or No V-20

If no. the DFG MENU is redisplayed. If yes, the program
prompts:

Enter file name under which DFG is to be saved ?.

The file name should be of the form "DFGxx" where xx is any
two alphanumeric characters. If the filename already exists
on the default drive, the contents of the file are -

overwritten. The DFG MENU is then redisplayed.
'•%
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4.4 -- Exit to main menu

This selection causes the SIMSIAM MENU to be displayed.

., 4f4

.% v
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IN 5.0 ENTERING LOGIC FUNCTION GENERATOR

If choice 3 from the main menu is selected, the following
menu is displayed:

L F M E N U

1 -- Load LF from file
2 -- Enter LF from keyboard
3 -- Modify LF in memory
4 -- Exit to main menu

Enter selection by number ?

Any of the displayed menu items can be chosen by selecting
the appropriate number and hitting the Return key. Each of
the selections is detailed here.

i 5.1 -- Load LF from file

This selection first prompts for the filename of the logic

°" function generator:

File name from which LF is to be read ?

The file name should be of the form "LFxx" where xx is any
two alphanumeric characters. This file is read from the
default drive. The program checks that the dimensions of
the LF are consistent with the number of states of the

machine and the number of input levels. Because it uses
this information, the input waveform and the DFGs must be

o entered before the LFs.

After the file is read, the LF MENU is redisplayed. '*

5.2 -- Enter LF from keyboard

After choosing this selection, the program displays the
prompt:

Enter number of output levels ?

This answer must be the number of distinct levels in the '
output signal. I.

The dialogue continues:

Enter ns values for output corresponding to input level
nn and each of the ns states. IT"

The user is directed, for a particular input level, to
" specify what the output level is for each of the states of

, the machine. (ns represents the number of states). This is
% "!>' I. - ,

--:.- Ud'
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repeated for each of the nn input levels. The program
checks that the output level does not exceed the number of
levels specified earlier.

After all output levels have been entered, the program
automatically goes into edit mode which is identical to LF
MENU selection number 3 and will be explained there.

S.3 Modify LF in memory

This selection should only be made after loading a LF from a ...%.%-
file, or control will automatically be passed to this point
after entering a LF from the keyboard. The program prompts:

Readout map just entered is as follows: . 1.

Input State Output . .%
%'-.

The output level is displayed for each of the machine states
and for one particular input level. The user is then asked
if any changes are necessary. If they are the program

prompts:

Enter changes in the format, state and output.
To end, enter state value of 0.

The program verifies all corrections to the data. After all A..
output levels have been modified, if necessary, the program
prompts for a file name to save the changes: .. .

Is LF to be saved (Y)es or No ?

Enter file name under which LF is to be saved. .

This file name must be of the form "LF.x.x" where xx can be
any two alphanumeric characters. If the filename already
exists on the default drive, the contents of the file are
overwritten. After the LF is saved, the LF MENU is °
redisplayed. The user should be aware that if changes to an .P
LF are not saved, they cannot be recaptured later.

5.4 -- Exit to main menu

This selection causes the SIMSAM MENU to be redisplayed. .

. .'.

• 5. .4
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6.0 RUN SIMULATION

If choice 4 is selected from the main menu. this causes the
simulator to run using the input waveform. DFGs and LFs
entered previously. Unlike the other main menu selections,
this one does not cause another menu to be displayed. The •
program prompts for necessary information:

Maximum # of system events in simulation (<= 240)
no. of events = 7

4 The simulator is asking for the maximum number of events to
In record in the simulation. If the actual number of events is -

less than this amount there is no problem. If the actual
number is greater, the simulation terminates when the
maximum number has been reached. This prevents the
possibility of an infinite number of events in the case
where the simulated machine oscillates.

The simulator next prompts for a physical processing time.
By hitting the Return key, a default value of 0 is assumed,
but any other value can be chosen. This value can be used
to simulate the latency of a particular machine.

p The program then prompts: S.--*:

Ready to run simulation. Enter initial state.
which must be an integer between 1 and ns

where ns is the number of states of the machine. The
program ensures that the initial state is within range, then

- runs the simulation. At the completion of the simulation,
all system events are listed in the form:

Index Output value Start time Input State

The index is an integer starting at I and is incremented for
each change in the input or state. The output value is
simply the combination of the input level and the state as
specified in the logic function generator. The start time
is the time when the change detected by the simulator
begins. Again, the change can recognized either in the

-, input or the state.

After all system events have been listed, the program I.-'

prompts to see if the results of the simulation are to be .

saved in a file:

File name for saving results ? '.

"°-,1

" %".' "4" ". ":".","- .'.° ," "- " -''° "'." " -:-''-.'" -''.. '"- . -''..'''- "" -""- "'.- "• ."; ."". .-.. ,.." "." ".".°- * "I''-.
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.7

A file name of the form "RESx;<' shoLild be entered, where >8<

can be any two alphanumeric characters. If the results are
not to be saved, simply hit the Return key. 4.

After saving the results in a file, the SIMSAM MENU is ~1~ 4.
redisplayed. 4.4.

*'
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7.0 PLOTTING WAVEFORMS

If selection 5 is chosen from the main menu, another menu is
" displayed:

PLOT MENU 

"- ,' 1 -- Plot input function ' ,

2 -Plot state function
3 -Plot output function
4 -Plot DFGs
5 -Load results from file to plot
6 -- Exit to main menu

Enter selection by number ?

Each of the menu items is described here in detail. For
examples of any of the plots, refer to the Programmable UART
example or the Binary Counter example elsewhere in this
Appendix. Be sure to load the appropriate files as
explained below before attempting to plot any functions, or
errors might result and possibly terminate the program.

7.1 -- Plot input function

Choosing this selection causes the input waveform in memory
to be displayed in graphic form on the monitor in high-

S.resolution mode. The input levels are displayed on the y-' °axis and units of time are displayed on the ..-a.,-is. The x- •

axis will be the same for all plots drawn and is derivedIfrom the event times of the simulation. Because of this.
the input function and DFGs cannot be plotted before a
simulation run (or before the results of a previous run have

been loaded with menu selection 5). This plot will be
labeled "INPUT FUNCTION. Hit the Esc key to return to the
PLOT MENU.

7.2 -- Plot state function

Choosing this selection causes the state evolution as a
"function of time to be plotted. This state +unction is %'

obtained from the simulation run, or by loading the results
file with menu selection 5.. The -,-axis is the event time
and the y-axis records the state levels. This plot will be
labeled "STATE FUNCTION" and will also list the names of the
input, DFG. and LF files as well as the initial state of the
machine and the processing time. If certain data had not

i ,.been saved or retrieved from a file. the filename for that
data would be left blank. After examining the plot, hit the
Esc key to return to the PLOT MENU.

7.7 -- Plot output function
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MODELING OF 7-LS93 BINARY COUNTER

To demonstrate the capabilities of the Simple Asynchronous
Machine CSAM] simulator a 74LS3 4 bit binary counter is
modeled. Because of current limitations of the simulator,
only three of the four bits of the counter are used.

Figure 1 show a diagram of the counter chip and external
connections for the configuration simulated. A binary input
signal is applied to input B of the 74LSS3 and the state of
the counter is taken from the outputs CB, CC, and 0D. ,..

In the simulator, the input signal is described as a two .
level signal with a fixed period [figure 2). The counter is
triggered on the falling edge of the input signal.

Since three bits of the counter are used, eight states are
possible. Sixteen DFGs are needed to fully describe the
behavior of this counter. These DFO waveforms are -
illustrated in figures 3-18. Each DFG waveform has a title
"DFGDM Element x, y", where DFSDM is the filename where
the waveforms are stored, x is the current input level, and
y is the state. Note that the input can assume one of two
binary levels, 1 or 2. The state is described by a digit
from i to 8.

The counter is in state I when the OD, CC, OB outputs are "'".". "
0,0,1 respectively. State 2 represents when the binary
outputs are 0,1,0 and so on. State 8 is when all outputs
are zero.

Since the counter is incremented only on the falling edge of
the input signal, or when the input changes from level 2 to r
level 1, all DFGs for input level 2 are flat. That is, if
the counter is in state y, and the input level is 2 the %
counter will remain in that state until the input level
changes.

When the input level becomes 1, the binary counter with

ripple carry is incremented. Because of the ripple carry
and finite delay of each JK flip-flop in the counter, the
least significant bit of the counter COB) changes state
before the more significant bits.

As a result, if the counter is in state 7, for example, and
the input changes from level 2 to level 1, the counter will
pass from state 7 to state 6 to state 5, and finally to

* state 8 after the carry has rippled through all flip-flops. %
This is shown in figure 9.

Figure 19 shows how the state of the modeled counter changes
when the input signal alternates between levels 1 and 2 at
regular intervals. The state is seen to progress in a

e e. .. "e

• . .° . . .°

,v',,:,',?..;.:.'.'. .'""."" ".,."",:. ".-- .. " , , "



7'LSS3 Binary Counter 2

staircase Fashion overall, but For certain state ..
transitions, the counter passes briefly through some
intermediate states. Again, note the transition from state
7 to state B as an example.

The output function is illustrated in figure 20. It is
identical with the state function because the simple ripple
counter modeled has no combinational circuitry at the
outputs of the flip-Flops. This can easily be added to the
model if desired.

Although the binary counter modeled by the SAM simulator is
a simple example, it demonstrates the capabilities of the .
simulator. With some enhancements the simulator will be
able to handle more complex asynchronous circuits where the,' .- A
efects of inputs on the overall response are not obvious.
Then the simulator will become a more useful tool.
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MODELING OF RCA CDP185Li PROGRAMMABLE UART

1. INTRODUCTION

An example of the usefulness of the SAM simulator is

illustrated here by modeling the behavior of a RCA CDPl85-i
Programmable Universal Asynchronous Receiver/Transmitter
.UART. The 1854 can be programmed to transmit 5-8 bit
characters, with or without parity, and one or two stop
bits. See attachment for a detailed specification of the
1854 UART. To transmit a character, the character is loaded
into the transmitter holding register. The UART then
transfers it to the transmitter shift register, where it is
serially shifted onto the transmit line.

Due to current limitations in the simulator (only a single
input and a single output), and because of the complexity of...
the 16S4, several assumptions are made and limitations are

placed on the operation of the 1854.

First, the 1B5 expects an external clock input connected to
TCLOCK [pin '0) to be 16 times the actual transfer rate of
the serial data. To simplify the simulation, TCLOCK is
assumed to be identical with the transmit frequency.

Second, the 1854 is assumed to be configured to operate in
Mode 0 by grounding pin 2 on the chip. In this mode many
important output functions are directly available as output
pins on the chip. The chip is also configured to transmit S
data bits. The specification states that 1.5 stop bits are
transmitted after a 5 bit character if the chip is
configured for 2 stop bits. The simulation assumes that 2
stop bits are transmitted with 5 bit characters.

2. INPUT FUNCTION

For this simulation, inputs of the 1BS are taken as
TCLOCK[H], the external clock input, and THRL[L). Note that
the polarity of the signal is designated in parenthesis
after the signal. "H" means the signal is activated, or
asserted when the signal is high, or logic value 1. "L" .' .
means the signal is asserted when the signal is low, or
logical value 0. THRL is the transmitter holding register
load signal and is active-low.

Because of the limitations of having only a single input, - '".. -.

the two binary input signals are encoded into a four level
input function. This input function is shown in figure 1. --'
The values of the binary inputs and the level of the input
function ore related as here:

S..-

______,% %'F . . -% .- -*--* - -" .. . .* o - .% .%, ° . .. . , . . . . . •. - -...
(' . j ',Z'._ 4........4 .'.),......-..'-. . .4 . ... "' " ... -. ".-... . " -" ." -"'.



CDP183SLi UART

THRL[L] TCLOCKCHJ INPUT FUNCTION LELEL .:

-. 0 0
4 0 11

10 2
1 °1 3

Again, referring to figure 1, it can be seen that the input
signal initially alternates between levels 2 and 3. This is
equivalent to the TCLOCK input changing as expected with
THRL high, or not asserted.

When the input signal alternates between levels q and 1, .
this is equivalent to the THRL signal being asserted [recall
that it is asserted when its value is a logical O] and the
clock input continuing as before. Finally the THRL signal
becomes not asserted and the clock continues as before.

What the input Function is modeling is the normal operation
of the 1854 UART and an asynchronous signal which loads a ,.
character into the holding register of the UART. The time
axis for all plots is expressed in units of microseconds.
Thus, a time interval of 2 is equal to 2 microseconds and a
time interval of .3 is equal to 300 nanoseconds.

3. DIGITAL FUNCTION GENERATORS

4.-

Before explaining the DFGs themselves, it is first necessary .j .. ,

to explain the meaning of each of the 9 state values. Five
PT bit characters are being transmitted along with a start bit

and two stop bits. In addition, the UART may be in a mark
state [no data available to transmit]. This implies the
following 9 states along with their state levels:

- State Level State Description

1 start bit transmission

2 data bit 0 transmission
3 data bit 1 transmission
If data bit 2 transmission 4--'

S data bit 3 transmission
6 data bit i transmission
7 first stop bit transmission
. second stop bit transmission

4 S mark transmission

Some of the nFGs for the simulation are shown in figures 2-

19. Only the nFGs for input levels I and 3 are shown since
the DFGs for input levels 2 and 4 are constant. This makes
sense because during levels 2 and 4, the clock input,

• ..-..... -. '. . . . . . . . °•. . . . '°%
" "% -" % " '" -.." .. q -...-. .-.-. ...-.... % ' ' - . . -. . . .' . % .•.".,% ."% .' °. . .. % "% . .. %
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TCLOCK, is low and it is assumed that transitions occur on .4.-
the rising edge of the clock pulse.

To explain the DFGs in figures 2-19, see figure 2 as a
typical example. Continuity of state is assumed in the DFG
and after a time interval of .3 C 300 ns I the state
transitions from state 1 to state 2. The 300 ns delay
reflects the specification for the 15.

Note in figure 18 that after 300 ns, the state transitions
from state 8 to state 1. In other words, the UART transmits
another stut bit after transmitting the last stop bit.
This is true assuming another character is available to
transmit after the current character has been sent. .-

4. STATE FUNCTION

The state function versus time is shown in figure 20 "
assuming an initial state of 9 C mark state ). On the
rising edge of the next clock pulse, the UART transitions to
state 1, then 2, and so on. This shows that the 185q is
transmitting a character, bit by bit, as it proceeds from
one state to the next.

In actual operation of the 1854, it would not proceed from a
mark state to start bit transmission state unless the THRL
input signal is pulsed to load a character. With the
limited number of states in this simulation, it is not
possible to know if the transmitter holding register is
empty unless the THRE signal is monitored as another input.
This deviation from actual operation in the simulation does
not obviate the results, however.

4_..

S OUTPUT FUNCTION

Three output signals are modeled for the 1854. SDOH], the
serial data output of the UART is where the output data is
observed. THRECH], transmitter holding register empty, is
asserted when the contents of the transmitter holding
register have been transferred to the transmitter shift
register. TSRE(H), transmitter shift register empty, is
asserted when the lost stop bit of the character has been
transmitted and there Is no character In the holding - ...
register.

THRE and TSRE become not asserted when the input signal THRL
is asserted. After THRL becomes not asserted, the character

Lthat has been loaded into the holding register is
transferred to the shift register and THRE is asserted.

,0.
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, . *

The three binary output signals are encoded into a single a 4
level output function as in figure 21. The output signals
and the corresponding output function level are shown below:

A TSRE(H] THRE(H] SDO(H) Output Function Level

Ir0 0 1 1
00 2
0 1 1 3
1 0 0 L

V% 1 0 1 S • '.
l 1 1 0 6

The output function waveform assumes that a five bit
character "00101" is transmitted, with bit 0 , a logical 1,
transmitted first. Referring to figure 21, the output
Function starts at level 7 1 initially, holding register and
shift register are empty, a mark or logical 1 is output on
SDO]. After the next clock pulse the output level drops to
2 C holding register still empty, start bit transmitted].
The output momentarily shifts to level 3 then to level 1

p. indicating that bit 0 is being transmitted (logical 1), and
meanwhile, the THRL input signal is asserted to clear THRE.

Next, bit 1 is transmitted [logical 0) and THRE is re- .-

asserted because the character has been transferred to the
shift register and the holding register is now empty. Then
bits 2 through 8 are transmitted, and two stop bits. ',

Assuming the holding register has been refilled, the
transmitter continues to transmit, beginning with a start
bit, and so on.

6. SUMMARY

This 185 UART example is a good illustration of the utility

of the SAM simulator. It shows the basic operation of the
UART for transmitting S bit characters. This example also
surfaces several problems in the simulator.

First, it is difficult to "see" the transitions on the -"

individual binary inputs and outputs since they are encoded *.

in a single multi-level signal. A more useful simulator -. ,
would allow separate inputs to be specified individually.
The same statement is true for the outputs. NP

Second, it is difficult to accurately model what happens
when the last stop bit of a character is transmitted. The
UART has to sample the THRE signal. If this signal is
asserted, then enter the mark state. If this signal is not
asserted, transfer a character from the holding register to :..-

"z .

• .= '



C!JP18SLk UART 5 A

the shift register, enter the transmit start bit state, and _.
assert THRE. The difficulty is that THRE needs to be used
as both an input and output signal. The current simulator
does not allow outputs to be fed bock to inputs.

A less desirable way to circumvent this problem is to add 9
more states, defined as for the first 9 states except that
one state means THRE is asserted and the other state means
THRE is not asserted. This immediately doubles the
requirments of the model, however.

Further work will allow the simulator to better model the
precise behavior of asynchronous devices, and thus provide
more accurate results. ,V
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CONP1854, CDPIS54C 

"IUProgrammable DcXMU Sum

Universal Asynchronous (~M-Recive/TansittrUART)
CC"4611-13 a :wo operting md*: th Baud2A rate-DC to20K bita/sec D NUcOPiSIAco Mode 0-fun etlonally compatible with @ VD,0=5 V POWER Ofov

industry types such ath R 2ADC to 400 K bite/soc Fr. TA -
Afode, ?-Interfaces directly with 41 V00D-10 V For TA=
CDPI800-seriss microprocessors a Fully Programmable with externally For TA= -without additional components loctable word length (5-8 bits), parity FrT

CDPj4"5 a Full- or half-duplex operation inhibit, even/odd parity, and 7. 1 ', or DVC
C011,1811ACE 04IM a Parity, framing, and overrun error 2 stop bits DVC

detection a False start bit dotection FOR TA:
OPERATip

The RCA CDP1654A and COP1SS4AC are silicon-gate directly compatible with the CDPISOO-seriss micro- PACKAC
CMOS Universal Asynchronous Receiver/Transmitter processor system without additional Interface circuitry. PACKA(. . -

(UJART) circuits. They are designed to provide the necessary When the mode input is low (MODE=0). the device is- -

formatting and control for Interfacing between serial and functionally compatible with industry standard UIARTs STOA E .%.r
parallel data. For example, these UARTs can be used to such as the TR1602A. It is also pin compatible with these LEOTE16 **

interface between a peripheral or terminal with serial 1/O types, except that pin 2 s used for the mode control input At diatar
Uports and thel-bit COP180O-serles microprocessor parallel instead Of a VGG=-12 V supply connection.

data bus system. The CDP1854A is capable of full duplex The COP1854A and the CDPIS54AC are functionallyFoperation, iLe., simultaneousaconversion of serial Input data identical. The COP1854A has a recommended operating-
to parallel output data and parallel input data to serial voltage range of 4-10.5 volts, and the COP1864AC has a Md noutput data, recommended operating-voltage range of 4-6.5 volts.. oeIi

The CDP1S54A UART can be programmed to operate in The CDPI8S4A and CDPISS4AC are supplied in hermeticpone of two modes by using the mode control Input. When 40-lead dual-in-line ceramic packages (D suffix) and in
the mode input is high IMOOE=1), the CDPIS54A is 40-lead dual-in-line plastic packages (E suffix). The

COP18S4AC is also available in chip form (lM suffix).

voo -1'N-- CLOCK v
36 n WNN,) a 39 - CI

A 3 37 FUeI 39- (PC
R BslJ 7 - 6 1C PAO 4 3? -WLS 2

:euse a e csRU$
, :- 6 S 7S R5 RUS 7 35= P

RIUs 4 4 33- T BUS? R4miS 7 3 CRIL
RUS 3 - 2 TOUS R @US4 a 33- roUS?

R $us a- 1o 31 TWAS Rem$US 3 9 32 T BUSe
n@S I It 3- T BUS4 It BUS 2-10 3 YO SI T55

A BUS 0= 'a 29: isusRUS34BI of 1 30= T5US4
iu"' 3) 25 ?aUSt ~o a2 a T US 3
FE - 4 27- TBUSI PC I3 24-TIUS 2

PCC BUWSO PC - 4 a? -TBUS I
- tCL IC as $Do 01 is a.- routso

:PA CLOCK- IT &4 - "%T t oo C s sco
Tpe a ao 2 s. R S fCLOCK I? 11 4 - Rste
a% -j s tz2 Tim Is "W R~

Sol -- 0i to tE OA 5 2 T"NRC
VI3 50 50 al, J. R

TOP VIEW
RC-40 COURIECTIOn PoomI we Comicif

04 mOS402

Mode I Mode 0
Terriinal Aaaigrimenl Terminal Assignment
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1600-Series Peripheirals
CDP1 854, CDP1854C

MAXIMUM RATINGS, Absolute-M~aximum Values.

DIC SUPPLY-VOLTAGE RANGE. (VD0 )
(Voltage reffenenced to VSS Terminal)

CDP1SS .................................................................................- 04.9 to +11 V
-COPIO64AC................................................................................. 0.5 to +7V

%a
INPUT VOLTAGE RANGE. ALL INPUTS ........................................................ -05 to V0 0 +0-5 V
DC INPUT CURRENT, ANY ONE INPUT................................................................ *10 MA
POWER DISSIPATION PER PACKAGE (PD): 6

For TA-40 to +W C(PACKAGE TYPE E) ............................................................ 30)MW I
For TA=+80 to +65- C (PACKAGE TYPE E) ..................................... Dem?. Linearly at 12 mW/*C to 200 mW

For T A-56o IOD*C (PACKAGE TYPED0)............................................................ 00w 
For TA-+100 to +1251C (PACKAGE TYPE D) ................................... Derale Linearly at 12 mW/*C to 200 mW £

DEVICE DISSIPATION PER OUTPUT TRANSISTOR '
FOR TA-FULL PACKAGE-TEMPERATURE RANGE (All Package Types) ...................................... 100 mW

OPERATING-TEMPERATURE RANGE (TA):
PACKAGE TYPE D......................................................................... -55to +1251C

PACKAGE TYPE E.......................................................................... -40to +65*C
STORAGE TEMPERATURE RANGE (Tatg)......................................................... .6w to +1W0C

T's LEAD TEMPERATURE (DURING SOLDERING): % e

t At distance 1/16:t 1/32 In. (1.59 ±0.79 mm) from case for 10 s max ........................................... +26C

airy
Mode Input Nigh (Mode 1)

hei TRANSMITTER SECION INTERFACE IRECEIVER SECION

* IEE'1.2 VOID

3.;1

TIMINGEC a OTO

GEN

J.

% TRANS



RCA CMOS LS1 Products
CDP1854, CDPI854C

Functional 0.oSTATIC ELECTRICAL CH4ARACTERISTICS at TA -40 to +68. C. unfli~s otherwise noted. Mode I
CONDITIONS LIMITS CDPIOO.0Ser

a: C14ACTERISTIC y 0  VIN VOID !C~j4A ~ P~~ NT ID:L UN/
(V) (V) (V) Min. Tp*Max. Mini. Typ.- Max. Positive suppi
- 0.5 5 - 0.01 50 - 0.02 200 MODE SELECQuiescent Device Current. 10 - 1 _ pAAhg-evl".

- 0, 10 10____ ____microprocess.&~.'

0.4 0.5 5 0.55 1.1 - 0.55 1.1 -
Output Low Drive (Sink) Current. IOL MA VSS: 11

_______________________ 0.5 .0.10 10 1.3 .2.6 -- Ground
*Output High Drive (Source) Current. IOH 4.6 0.5 5 -0.551 -1.1 - --0.55 -1.1 - ACHIP SELEC~

(Except pine 24 and 25) 9.5 0.,10 10 -1.3 -2.61 - - - - AA low-level vo
Output High Drive (Source) Current. 1 H 46 05 5 -. 6-5 - -. 6 35Selects the CC %~.,

PIns 244d2 .5 0 10 105 -2.8 -3.5 - -. -. - mA RECEIVER St.*
Pins 24 and 25 ______.5__0___W_10__-2. ____6.0_____ - - Receiverperal

- 0.5 5 - 0 0.1 - 0 0.1 to correspondOutput Voltage Low-Level, VOL*- 010 0 0 0.INEUP 0
V ~A low-level vo

Output Voltage High-Level, VOH - 0.5 5 4. 5 - 4.9 5 one or moreo
______________ 0.10 .0 9.9 10 __ - - - - FRAMING ER

Inu o otgVL0.5.4.5 - 5 - - 1.5 - - 1.5 A high-level
Snu o otgVL0.5,95 - 10 - - 3 - - - received cha

V following the
IptHgVotgVH0.5.4.5 - 5 3.5 - - 3.5 - - voltage. Thi

0.5.9.5 - 10i 7 - transferred to

- 0.5 5 - - d: - 1 PARITY ERRC 'V%Inu uret I A A high-level v(InutCurnt lN- 0,10 10 - - ±2 PE or -E -beiseitA ir .2
0.5 0,5 5 - - ±1 -i: Reitr1i

3-State Output Leakage Current, IOUT 0.001 0 - 1
0.1 0.0 1 -A±0 REGISTER SE

Input Caoscltance. CIN - - - - 5 75 - 5 7.5 RECEIVER CL

Output Caaitne COnI 15 Clock-kI~ inputocesc w___
chiftrate.a

with open outpERIA6DATA AL

Serial data rec
Shift Register
length. A higt
data is not be.

RECOMMENDED OPERATING CONDITIONS at TA-Full Package Temperature Range, CLEAR (CLE A <

Fo aiu eliability, operating conditions should be selected so that operation is always within the following ranges: AFlo,-Recve '

CONDITIONS_ LIMITS___ Status Registc

CHARACTERISTIC Vo0  COP1854A CDPISS4AC UNITS
________________________________V Min. Max. Min. Max. ~ .

Input Voltage Range - VSS VD0  VS V00  V

Saud Rate (Receive, or Transmit) 1 0

216
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1800-Series Peripherals
CDP1854, CDP1854C

Functional Defintilone for CDPlIS4A Terminals C
Mode ICD1l0110-Sirles Mlcroprocemwr Compatible_
SIGNAL- FUNCTION TRANSMITTER HOLDING REGISTER EMPTY (THRE):
VD s: A low-level voltage at this output indicates that the Trans-
Positive supply voltage mitter Holding Register has transferred its contents to the
MODE SELECT (MODE): Transmitter Shift Register and may be reloaded with a new

A high-level voltage at this input selects CDP1800-series character.
microprocessor Mode operation. CHIP SELECT 1 (CS1):

VSS: A high-level voltage at this Liput together with C2 and CS3
Ground selects the UART.
CHIP SELECT 2 (CS2): REQUEST TO SEND (RTS):low-level ELET ts it tThis output signal tells the Diers to get ready toA low-level voltage at this input togetherwith CS1 and CS3 receive data. CLEAR TO SEND CTS) is the response from
selects the CDP1S54A UART. the peripheral. RTS is set to a low-level voltage when data is
RECEIVER BUS (R BUS 7 - R BUS 0): latched in the Transmitter Holding Register or TR is se
Receiver parallel data outputs (may be externally connected high, and is reset high when both the Transmitter Holding
to corresponding transmitter bus terminals). Register and Transmitter Shift Register are empty and TR is
INTERRUPT (INT): low.
A low-level voltage at this output indicates the presence of SERIAL DATA OUTPUT (SDO):
one or more of the interrupt conditions listed in Table I. The contents of the Transmitter Shift Register (start bit.
FRAMING ERROR (FE): data bits, parity bit, and stop bit(s) are serially shifted out on .
A high-level voltage at this output indicates that the this output. When no character is being transmitted, a high
received character has no valid stop bit, i.e., the bit level is maintained. Start of transmission is defined as the
following the parity bit (if programmed) is not a high-level transition of the start bit from a igh-level to a low-level Jvoltage. This output is updated each time a character is output voltage. -1

transferred to the Receiver Holding Register. TRANSMITTER BUS (T BUS 0 - T BUS 7):
PARITY ERROR or OVERRUN ERROR (PE/OE): Transmitter parallel data input. These may be externally %
A high-level voltage at this output Indicates that either the connected to correspondirg Receiver bus terminals.
PE or OE bit in the Status Register has been set (see Status RD/WR: ,..
Register Bit Assignment, Table II. A low-level voltage at this Input gates data from the
REGISTER SELECT (RSEL): transmitter bus to the Transmitter Holding Register or the
This input is used to choose either the Control/Status Control Register as chosen by register select. A high-level
Registers (high input) or the transmitter/receiver data voltage gates data from the Receiver Holding Register or
registers (low input) accordingto the truth table in Table Ill. the Status Register, as chosen by register select, to the
RECEIVER CLOCK (RCLOCK): receiver bus.
Clock input with a frequency 16 times the desired receiver CHIP SELECT 3 (CS3):
shift rate. With high-level voltage at this input together with CS1 and
TPB: CS2 selects the UART.
A positive input pulse used as a data load or reset strobe. PERIPHERAL STATUS INTERRUPT (PSI): ".

A high-to-low transition on this input line sets a bit in theDATA AVAILABLE (DA): Status Register and causes an INTERRUPT (IN'Tlow).A low-level voltage at this output indicates that an entire
character has been received and transferred to the Receiver EXTERNAL STATUS (ES): p
Holding Register. A low-level voltage at this input sets a bit in the Status

SERIAL DATA IN (S DI):Reitr
Serial data received on this input line enters the Receiver CLEAR TO SEND (CTS):
Shift Register at a point determined by the character When this input from peripheral is high, transfer of a
length. A high-level input voltage must be present when character to the Transmitter Shift Register and shifting of
data is not being received. serial data out .7 inhibited.
CLEAR (CLEAR): TRANSMITTER CLOCK (TCLOCK):
A low-level voltage at this input resets the Interrupt Flip- Clockinput withafrequency1Stimesthedesired transmitter
Flop, Receiver Holding Register, Control Register, and shift rate.
Status Register, and sets SERIAL DATA OUT (SO) high.

%
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RICA CMOS LS1 Products
CDPIS54, CDPI854C

Table I - Interupit Set and Nese Conditions Dedplion fl
______________- __LOW)_ RESET (IN HIGH) pIrefteCir

CUECONDITION TIME I h OIO >
DARead of data TIPS leading edge the COPIS54A

(Receipt of data) send status via -P.
TR Read of status or TPB leading edge connected to

determined by ---

(Abilit to reload) write of character ____________

THE'SR Read of status or TIPS leading edge SLR/
(Transmitter done) write of character XE D

paT Read of status TP8 trailing edgeLo Lo -

67-S;epe Read of status TIPS loading edge Lw Hg

(Positive edge when THRE -TSR) I_________ I__________ High LooE

p 'Internupts will occur only after the IE bit in the Control Register (see Table IV) has been set.
*THRE will cause an interrupt only after the TR bit in the Control Register (see Table IV) has been set. igh Iligi ~

In this mod* t
tIonal bus syst ~
coneced to t
Cono outpul -%
COP1S84A kn

Table 11 - Status Register Sit Assignment Registers and
Control Regis
order to dateaft 17 615 4131211 01 (ART. Date is

Snal THRE TSRE PSI ES FE PE OE OA to the Contrc
AlsoeAvaiableadtTerminal 22 - - 14 15 15 19' selected CS I

designated (R:
*Polarity reversed at output terminal, a Status Regis

(ARBUSO-R E
UART. Some

M Ugnk Fationseparate term
0-DATA AVAILABLE (DA): 4-EXTERNAL STATUS (ES): IT~lm~~
When Me high, this bit Indicates that an entirecharacter has This bit Is set high by a low-level input at Term.. 38 (S.Belf ore beginr
been received and transferred to the Receiver Holding 6-PERIPHERAL STATUS INTERRUPT (PSI): ()bt i h
Register. This signal Is also available at Term. 19 but with its This bit is set high by a high-to-low voltage transition of IV) is set. Lo
polarity reversed. Term. 37 LM). The INTERRUPT output (Term. 13) is also twogh loas re p

I1-OVERRUN ERROR (OE): asserted (INT=low) when this bit Is set. to set TR. V
When se high, this bit Indicates that the Oats Available bit 6-TRANSMITTER SHIFT REGISTER EMPTY (TSRE): POLING RE
wos not reset before the next character was transferred to When set high, this bit indicates that the Transmitter Shift signalling the
the Receiver Holding Register. This signal OReodwith PElIs Register has completed serial tranamission of a full Register is ei

%output at Term. IS. character including stop bit(*). It remains se until the start causes assert .

2-PARITY ERROR (PE): of transmission of the next character. OnT) output .

When set high, this bit Indicates that the received parity bit 7-TRANSMITTER HOLDING REGISTER EMPTY (THRE): for propeo
does not compare to that programmed by the EVEN When set high. this bit indicates that the Transmitter to enable rH
PARITY ENABLE (EPE) control. This bit Is updated each Hodn eitrhstaserdIscnet oteThe Transmtiv~ .

time a character Is transferred to the Receiver Holding Transmitter Shift Register and may be reloaded with a new TP.%rn
Register. This signal OA'ed with OE is output at Term. 15. character. StighsbtaloesteTM upt(er.CDP1S4A is .,..

3FAIGERRFE:22) low and causes an INTERRUPT (7Tiw.If TR Is Holding Roti
When ~ ~ ~ ~ ~ ~ Setn this bith tlso bits thicte that outpu reevTerm.tr ih WetC

hesno setligh sthis bit Indes, thtlw the eevdcarcter high.conecdt
programmed) Is not a high-level voltage. This bit Is updated Trmitter Sr
each time a character Is transferred to the Receiver Holding ritr i i~.I; Register. This signal Is also available at Term. 14. l saded n t

TPS and tra -

period later(

unused bits*-
transmitted.
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1800-Series Pefripherals
CDP1854, CDP1S54C

Desoti n of Mode I OPW8l~on CDPl0G-1 1a Micr0o- ne transniftt clock period after the Transmitter Shift
SCompatle (Mode loinpuItV ) Regisgtlia loaded from the Transmitter Holding Register. 0-

. l 5M toeevecmansad the THRE signal will go low and an Interrupt will occur (wtM
9ge low). The next character to be transmitted can then be

In the COP1g00-sere microprocessor compatible mode, loaded into the Transmitter Holding Register for trans-
the C Amission with its start bit immediately following the last stop
send staus via the microprocessor data bus The register bit of the previous character. This cycle can be repeated
connected to the transmitter bus or the receiver bus is until the last character is transmitted, at which time a final
determined by the RD/W and RSEL Inputs as follows: THRE TSRE Interrupt will occur. This interrupt signls the

microprocessor that TR can be turned off. This is done by
Table M -reloading the original control byte in the Control Regater

RSL No Ptuntion with the TR bit - 0, thus terminating the AEOUIPWY
Low Low Load Transmitter Holding Register from i (-Yr) signal.

aTranrmtter Bus SERIAL DATA OUT (SOO) can be held low by setting the
Low High Receiver Holding Register from 1REAK bit In the Control Register (see Table IV). SOO is.v us held low until the BREAK bit is reset.

High Low oad Control Register from Transmitter
us

High High ead Status Register from Receiver But

In this mode the COP654A is compatible with a bidlroc- 41 cs
tlonal bus system. The receiver and transmitter bum are %ss
connected to the bus. COP1600-series microprocessor I/O

- control output signal. can be connected directly to the
I - COPI854A Inputs as shown in Fig. 2. The CLEAR input is

pulsed, resetting the Control, Status, and Receiver Holding ;1.
Registers and setting SERIAL DATA OUT (SDO) high. The TP9 U R
Control Register is loaded from the Transmitter Bus in CPu 7 1-_5 4--
order to determine, the operating configuration for the N
UART. Data Is transerred from the Transmitter Bus inputs "
to the Control Register during TPB when the UART is . THRE
selected CSI• CS-. CS3=11 and the Control Register In L % "-
designated (RSEL-H, RD/WR=L). The CDP1854A also has 4-.
a Status Register which can be read onto the Receiver Bus Sol Ile
(R BUS 0 - R BUS 7) in order to determine the sttus of the SOO
UART. Some of these status bits are also available atBu os
separate terminal$ as indicated in Table II.
3. Transmitter Operaton r C UWE

Before beginning to transmit, the TRANSMIT REQUEST r
(TR) bit in the Control Register (see bit assignment, Table
IV) is set. Loading the Control Register with TR=I (bit V°o

lion o 7=high) inhibits changing the other control bits. Therefore
llo two loads are required: one to format the UART the second

to set TR. When TR has been set, a TN Fig. 2- Recommended COPI500-senrm €onreAteOn,
HOLDING REGISTER EMPTY (T 'E) Interrupt will occur, Mode I (non-interrupt driven system).

or Shift signalling the microprocessor that the Transmitter Holding
full Register Is empty and may be loaded. Setting TR also & Receiver Operatio

I Start causes assertion of slow-level on the REQUEST TO SEND The receive operation begins when a start bit is detected at
IMT ) output to the peripheral. Ilt s not necessary to set TR the SERIAL DATA IN (SDI) input. After detection of the first
for properE oration for the UART. If desired, It can be used high-to-low transition on the SOl line, a valid start bit is

emitter to enable THREinterrupts and to generate the M' signal. verified by checking for a low-level Input 7-1/2 receiver
-v the The Transmitter Holding Register Is loaded from the bus by clock periods later. When a valid start bit has been verified,

% TPB during execution of an output instruction. The the following data bits, parity bit (if programmed) and stop
CDP1884A is selected by CSI - CS2 - CS3=1, and the bit(s) se shifted Into the Receiver Shift Register by clock - -

Holding ReSloterjsseleted by RSEL-L and RO/WRL. pulse 1-1/2 In each bit time The parity bit (if programmed)When the -LEAR-TO-SEN'SD M input, which can be is checked and receipt of a valid stop bit is verified. On
connected to a peripheral device output, goes low, the count 7-1/2 of the first atop bit. the received data is loaded
Transmitter Shift Register will be loaded from the Trans- into the Receiver Holding Register. If the word length is less
mitter Holding Register and date transmission will begin. If than 8 bits, zeros (low output level) are loaded into the

=l s always low, the Transmitter Shift Register will be unused most significant bits. If DATA AVAILABLE (DA)
loaded on the first high-to-low edge of the clock which has not been reset by the time the Receiver Holding t Mi
occurs at least 1/2 clock period after the trailing edge of Register is loaded, the OVERRUN ERROR (OE) status bit Is
TPU and transmission of a start bit will occur 1/2 clock set. One half clock period later, the PARITY ERROR (PE)
period later (see Fig. 3). Parity (if programmed) and stop and FRAMING ERROR (FE) status bits become valid for the
bit(s) will be transmitted following the last date bit. If the character in the Receiver Holding Register. At this time, the
wordlengthselctedlslosethan8bits. themostsignificant Data Availlable status bit Is also set and the DATA
unused bits In the transmitter shift register will not be AVAILABLE (OA) and INTERRUPT (INT) outputs go low, %-r
transmitted. signalling the miCropiocessor that a received character is i, % %
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RICA CMOS L81 Products
CDP1854, CDPI854C

ready. The mlcropoceuaorresporids by executing an Input M!yi~d,* orco115C ication with a peripheral. The elAI EI
Inatnicti"f. The UART's 3-state bus drivers are enabled RQETT E RS uptsga lrsteC~O P e .
when the UART IS selctd (CS1 - CU[. C83-1) and pripheral to got reedy to receive data. The CLEAR TO
RO/IV-bigh. Status can be read when FISEL-high. Data IW (UMI input signal Is the fee nse al nailing that s4
is reed when FISEL-low. When resading date, Tfflatchs the peripheral isAL red.Th XER fUATU3 (A)
data in the microprocessor and rests DATA AVAILABLE npttceafpeaIstatus leve. and the PERIPHERAL-J

* (WI In the UART. The preceding sequence Is repeated for TTUIER PTW i nput sensesii a status edge Trnmte Tim
each serial character which Is received from the peripheral. (high-to-low) and also generate" an Interrupt. For example. ,-

the modemn __TACARRIERDTC line could be%
connctedto te PI Input on the UART In order to signal MnmmCok'

em the microprocessor that transmission tailed because of
lossof thecarrieron the communications line. The PSI and MnmmPle

In addition to serial data In and out, four signals are ES bits are stored In the Status Register (see Table 11). C4ock Low Le p.

Table IV - Control Register Sit Assignment CokHg

St7 6 5 4 1 3 12 1 0

UgdTR BREAK IE WLS21 WLS1I SBS IEPE I 1 MiimmSeup

SiN signalt Fwuin Clock to Data
0-PARITY INHIBIT (Pt): 5-INTERRUPT ENABLE (IE):
When lst high parity generation and verification are When set high RI, OA. THRE -TSRE, M.I and PSITPtoHE
inhibited and the PE Status bit is hoid low. If parity is interrupts are enabled (see Interrupt Conditions. Table 1).
Inhibited the stop bitls) will Immediately follow the last data 6-TRANSMIT BREAK (BREAK): Clock to THR
bit on transmission. and EPE is Ignored. Holds SOO low when set. Once the break bit in the controi
I1-EVEN PARITY ENABL.E (EPE): register has been set high, 500 will stay low until the break%

When set high, even parity Is generated by the transmitter bit is reset low and one of the following occurs: ULr"ypical values srI Iand checked by the receiver. When low. odd parity Is goes low; MTgoea high; or a word Is transmitted. (The 'Mazimum limits,
selected. transmitted word will not be valid since there can be no start '
2-STOP IT SELECT (SS): bit it SOO Is already low. SOO can be sot high without
See table below. intermediate transitions by transmitting a word consisting
3-WORD LENGTH SELECT I (WLSI): 7TASI EUS T)
See table below. ?TASI EUS T)

4-WORO LENGTH SELECT 2 (WLS2): Whnst high. R1 isstiwad%6g~nfr hog hSee tble blowtransmitter Is initiated by the initial THRE interrupt. (When
See tble blow.loading the Control Register from the bus, this (TR) bit

inhibits changing of other control flip-f lops).

0 0 0 5 data bits, 2 stop bits

1 0 0 7 data bits, I stop bit
1 1 1 6 data bits. 2 stop bits m a

12~~20 .. \



IWO0-Series Pelpheral. ' s
CDPIS54, CDPIS54C

DYNAMIC ELECTRICAL CHARACTERISTICS at TA -40 t 8*C. Woo ±ft tqtr2l ow. VIN-&7 Y0 VIL 4& VC0 q ,w.
SCLUOW Pp. noe R&g 2. ____________ N

CHARACTERISTIC VDD C01111 CP14A UN"T

?ransffilalMORI" - Mode I-

Minimum Clock Period 5 250 310 250 310 n
__________I=____0__125____________

ladMinimum Pulse Width: a 100 125 100 125 n
Clock Lowv Level tCL 10 75 100 - - J

5 100 125 100 125
Clock HighLevel, tCH 10 7 00sj

& Pt~okte 10 907 100 - I

PaainDea e 5 100 I50 300 IS0 1s

no

Clock to DaeStart Sit It 10 150 122 5 - -
5 200 300 200 300

4 TP~toTHRE tTl 10 100 IS0 - -n

ble Coc ~ThE ~~ 5 200 300 200 300
10 100 150 - -

-'4rol
,-Oak

tTyp~cl values am for TA=25C and nominal voltages.
1(The *Maximum limits of minimum characteristics are the values above which all cievices function.

ut

1*: Ithe N
%?jhenl
.. bit

*AavUitC5. HC4.IN TRtANSMITTER SHIFT C

RE515?ER LADED mo01Sm waMoc

cc1

Loj~' U 'U'r

t* .c -IQ,%

aTH9 MOI.Ot REGISTER 15 LOADED ON THE TRAILINS cEM OF TPS
CTHlE TWAMInirTER ship, 4acss1il IS LOADED ON TME MYs I-70-LOW ThhDSITON OF ThEtu

CLOC PINCHl OCCURS AT LEAST V12 CLOCK KOM10 + tC AFTER THlE TCAILC1 EDM Or 755, AND
TRANSOMI MO Oft A STRan 5 OOGuM 1/2 CLOCK KaMo + 

t
eo LATIl

t RITE 5 TWl OVERLAP OF 755,06 aw11 AsO CU- AND W,.0.0s mIo PICO -J's

Fig. 3 - Troamitter timing diagram - Utode 1.
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RCA CMOS L31 Produet
CDP1854, CDP1854C

OYIEAC ELECTRICAL CHARACTEpItliiCS a TA -0 -oe +*C, VODk3 10100ttr2 no, V;H147 V00. VIIL3J V00. ovtAwsC ELECTr
CL810S PP. m ft 4. __________ I UMTS ICL-100PPSO l,~

CHARACTERISTIC VD0 1  COPISS41A CDj4C UNITS
V(VDh p t IMan.- I7lt I al.

- -CPU laeqo -11 %
Meinmum c PerodelC 250 310 250 310 noMinimum Pulse W

Minmu Cloc 1erI5 -C - TP8
Minimum Pulse Widtht: 5 100 125 100 125 Mnmm.u~

CoLovensl tL 10 75 100 - - SEL to Wite .

5 100 125 100 125Clock High Leve tCH 5 ns aat rt
________________ 10 75 100 - -Dostwre

5 100 150 100 150 MnmmHl iTP8 trr 1 o 7 o iiu odTr
-- RSEL after Write

* .Minmum Setup Time. 5 100 150 100 150
D. 4 ateaStartsit to Clock 10C 10 50 is - - 01 fe rt

4,Propagation Deay Time: 5 220 325 220 325
TP. to TP ATX AVAILABLE tTOA 10 110 175 -typojaueamf

5 220 325 220 325 *Maximum fimiti of r.\Clockto DATA AVAILABLE tCDA 10 110 175 - n ~ o

5 210 300 210 300* Clockto Overrun Error tCOE 10 15 10 - - no

5 240 375 240 375
p. Clock to Parity Error ICPE 10 10 75 - no

5 200 300 200 30"S Clock to Framing Error tCFE15 YACELC

* tTypical valuesaore for TA25*C anda noinial voftages. CL-100 Pp, WO~ Ph*Maximum limits of minimum characteditcs ame the values above which off dinvices tunction.

"CCLOC 7"t C
SANPLE CLOCK ? 'z LOAD 44LDING REGISTER 'S

:I !,.tcu Minimum Setup Ti

09 Read to Data VAila:6
.P. IleL to Date Valid

reC 
men,a FAITR 1 OCCUR2 AT A TIME LIES$ TWAIDC KIMEO~ A toN-TO- LOW TRANSITO OF TKl CLOCK, Data after Read % '

TIQSATSTMAT ME COM11PUITELY AlINNORONOUS WITM T49E CLOCK.tpig els m,

14 %TIME A WWE WORD It LOAME 1#470 THE RE4CEIVER .104.01M RE1GOISER TIE Ot SIGNAL WILL, COME TRUE iltfa@
fO0 AND PC IANE TERMINAL IS AND ARE ALSO NVEILAILE AS TWO SEPARATT ITS IN rE STATUS REGISTYS
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1800-Series Peripherals
CDP1854, CDP1854C

DYNAMIC ELECTRICAL CHARACTERISTICS @O TA = 40 to *lSOC. Vo0 :51%, tr ,t20 ea, VIN-0.7 VD. VIL-6.3 VDD.i CL-108 PP, "e PI.

- -- II" U M IT S I --
CHARACTERISTIC VDO COPISA COPIG54AC UNITS

:PU ~e - WRITE Timms - Mel I
Width: S 100 150 100 150TPU rTT 10 50 75 - -

. Minimum Setup Time: 5 50 75 50 75
RSEL to Write 'tSW 10 25 40 n

5 -100 -75 -100 -75Data to Write tOW no
_________________________ 10 --50 -35 .- -

Minimum Hold Time: 5 s0o 5 50 7
RSEL after Wite tWR 10 25 40

p . 5 75 125 75 125
Dta after Write tWo 10 4O o - -

I.lTyplCal vslue ae for TA-2S1C and nominal voltages
*Maximum limiti of minimum characteristics are the values above which ali devices function.

reae

DYNAMIC ELECTRICAL CH4ARACTERISTICS at TA * 40 to +611C, V1D0 ±5%. thtf-20 etVN-I. 7 VDD. VIL-41.3 VD0 .
CL-100PPse 940 . 6. L______________

It UUNITS
CHARACTERISTIC _I.T

CPU Interfse -fal READ TIng - Mode I
Minimum Pulse Width: 5 - 100 150 - 100 150

TPO ITT 10 - so 75 . no

* Minimum Setup Time: S - 50 75 - 50 75
RSELtoTPO tnSg 10 - 25 40 - - -

Minimum Hold Time: 5 - 50 75 - s0 75
4SELoftorTPS TRS 10 - 25 40 - - -

5 - 200 300 - 200 300Reed to Date Access Time tADDA 10 - 100 10 - n

'I S - 200 300 - 200 300 :t
Reed to ata Vali Time RV 10 - 100 no

5 - ISO IS 225 .
RSEL to Date Vald Tlme tRSOV no -- 75 : - 225

S HolTime. 5 0 150 I- S 150 -

Dots after Rmed IRON 10 25 75 -. -

tTyplcal vluee a for TA="BC and nominal voltage.
0% *Maximum lmita of minimum chtracterisdc are the values above which i deisea function.

°" 4**22
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ACA CMOS LS1 Products
CDP1 854, COP1854C_ _ _ _ _ _

TP5 
.,4*

SIGNAL FUCTION

ai~~~~aL M_________________tODE SELECT (MOC

T SAO- 
A__1000__11011114__voltage___t_______

"4. Bois _ _ _ __ _ _ __ _ __ _ _ __ _ _ __ _ _ O p e rat o. L e*

a 
RECEIVER REGISTEF %es

MIWEtEA Ahigh left l~e ,~Bt d"
Recie Holding R0g,

*WRITE IS THE OVERLP OF Th5 CO. Call I AND Mu.ai. **CM5* RECEIVER SUS( i..'

Receiver parallel data -

fig. 5 -MAode I CPU interface (WRITE) timing diagram. PARITY ERROR (PE)

received parity does

.4. 
thme EVEN PARITY El

nay Holding Register. PE'
PAML bused together alnc'

1
5V4provded by thieSTA'

ISBus? 0- a FRAMING ERROR (F ~
-- a 11O received Character

' \\> ~ oltaoige The ily Ip
___________ vtawg This ouapit

transferred to the Re

dli~~~~~~ __________snumber ofarrs c

disconinect capebili' .

DISCONNECT (SFC

ItUIS OVERRUN ERROR
A high-level voltage

Fig, 6 - Mode I CPU inter fce (READ) timing diagram. AVAILABLE (DA) .

characterwas tianaf'ie
OE lines from a nur %.

Mod Inut ~w(Moe *0)since an output die %

CLOCEV.Ya STATUS FLAG DIS
T LCKaCLC I * A high-level voltag,

SO* 40 1 1 state output drivers

PAIY"N CNTO- GSC RECEIVER CLOCK - *

Clock Input wtat
Shift rate.

S.. 
DATA AVAILABLE

TRANS.A low-level voltag- "A
REGISTERip-flop.

DATA AVAILABLE
A high-level voltiag
character has been -.

TRAS. omrpt.STAUSHolding Register. %-~
'OLONG go 94,TIO 34 RGISER 4, IRSSERIAL DATA INIV

n aIs n 3 2 3 33 33 6 3930 7 1 260 1 'S . .2Serial datea receive

C L F ... received.

TanI,?SSCII 
MASTER RESET(

4PI~RIITONM~IE aTO A high-level volti ~.
Holding Register,

fig. 7 - Mode 0 block diagram (industry standard campastibl).ansestearl--
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-~ ~~ 180-Serlos Pedpheruls -

S.' CDP18564, COP1854C
ftaulenal Oeflfts for coPInS4 Terminaes TRANSMITTER H4OLOIN43 REGISTER EMPTY (THRE):

0 A high-leve voltage at thia output Indicates that the e
Transmitter Holding Register has transferred Its contents

SIGNAL FUNCTION to the Transmitter Shift Reglister and may be reloaded with
VDD: a new character.

Positive supply voftagc TRANSMITTER HOLDING REGISTER LOAD (TI'RL),
MODE SELECT (MODE): A low-level voltageappled to thIs Input enes the character

A low-level voltage at this Input select* Standard MOde 0 on the bus Into the Transmftter Holding Reg8ster. Data is
Operation. latched on the tralling edge of this signal. "

VSS: TRANSMITTER SHIFT REGISTER EMPTY (TSRE).
Ground. A high-level voltage at this output Indicates that the
RECEIVER REGISTER DISCONNECT (RRO): Transmitte Shift RegIster hascomplead aerial transmisaion
A high-level voltage applied to this Input disconnects the of a full character Including atop bit(s). It remains at this

SRece~ve Holding Register from the Receiver Bus. level ontil the start of tranamission of the nomt character.

RECEIVER BUS (R BUS T - R BUS 0): SERIAL DATA OUTPUT (800):
Receiver Parallel dat outputs. The contents of the Tranamitte Shift Register (start bit.

PARITYERROR(PE):data bits. party bit. and stop (bit(s)) are serially shifted out
PARIY EROR PE) on hisoutput. When no character is being transmitted. a- A high-level voltage at this output Indicates that th high-leelm al*ntalned. Stastftransmisson I*defined as

recevedPariy des nt cmpar tothatProrammd ~ the transition of the start bit from a hIgh-leve to a low-level
the SVEN PARITY ENABLE (EPE) control. This output is output voltage.
updated each time a character Is transferred to the Receiverxv e
Holding Register. PSEfOnes from a number of arrays can be TRANSMITTER BUS (T BUS 0 -? BUS 7):
bused together since an output disconnect capabiliyi rnmte aalldt nus
provided by the STATUS FL.AG DISCONNECT (SFD) line. CONTROL REGISTER LOAD (CRL):
FRAMING ERROR (FE): A high-'evel voltage atthis input load$ the Control Register%
A high-level voltage at this output Indicates that the with thes control bite (PI. EPE. SBS, WLSI . WLS2). This line
received character has no valid stop bit. I.e.. the bit may he strobe or hardwired to a high-level Input voltage.
following the party bIt (if programmed) Is not a high-levell PARITY INHIBIT (Pt):
voltage. This output Is updated each tim a1 characte Is A higltl voltage at this Input Inhibits the parity genera-
transferred to the Receiver Holding Register. FE lines from tion and verification circuits and will clamp the PE output

*a number of arrays can he bused together since an output low. If parity Is Inhibited the atop bit($) will Immediately
* ~~disconnect Capability is provided by the STATUS FLAG folwteasdtabtntrnmsi.

DISCONNECT (SF0) line. STOP BIT SELECT (555):
OVERRUN ERROR MOE): This Input selects the number of stop bits to be transmitted
A high-level voltage at this output Indicates that the DATA after the parity bit. A high-level selects two stop bits, a
AVAILABLE (DA) flag was not raet before the next low-level selects one stop bit. Selection of two atop bits
character was transferred to the Receiver Holding Register. with five data bits programmed selects 1.5 atop bits.

- OE lines from a number of arrays can be bused together
since aouptdisconnect capability Is provided by the
STATUS FLAG DISCONNECT (SF0) line.%
STATUS FLAG DISCONNECT (SF0): %
A high-levei voltage, applied to this input disables the 3-
state output driveraforPE. FE. OEL DA, and THRE. allowing TCOKaCOU'
these status outputs to be bus connected. o

RECEIVER CLOCK (RCLOCK):
Clock Input wiha frequency 16 time@ the desired receiver 9IW2
shift rate. PO WS

DATA AVAILABLFE S (NAR):CU PI

A low-level voltage applied to this Input resets the DA la C AR

flip-flop. Ta
I' DATA AVAILABLE (DA):

A high-level voltage at this output Indicates that an entire nO

character has been received and transferred to the Receiver 9 V o
'I,. Holding Register.
p SERIAL DATA IN (801):

Serial data received at this Input enters the receiver shiftwe MD%
register at a point determined by the character length. A
high-level voltage must be present when data Is not being
received. V

MASTER RESET (MR): C).
A high-level voltage at this input ~9et the Receiver oeIP
Holding Register. Control Register, and Status Register,
and Sets the serial data output high. Mgp. 6 - Aode 0 connectlw, diagramt
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RCA CMOS LS1 Products _ 
"° ""

CDPIS54, CDP1854C
WORD LENGTH SELECT 2 (WLS2): b f s o pulse to the fTFAi- DYNAMIC ELECI
WORD LENGTH SELECT 1 (WLS1): MITTE HOLDIN REy SELOAD CTRNCTInput causing CL-100 PFa r see Fl

Thes tw inutsselet te caraterlengh (xclsiv of THRE to go low. If the Transmitter Shift Register Is emptypaestwo ina sel ct h hrce egh(xlsv (TSRE Is HIGH) and the clock Is low, on the next high-to-
low transition of the clock the character Is loaded into the

9,WLg WISI Word LeghTransmitter Shift Register preceded by a start bit Seial
Low Low * data transmission begins 1/2 clock Period later with a start InteraceTmig-Low Bits ~bit and 54 data bite followed by the parity bit (if pro-MimuPlsLOW High Bits grammed) and stop bit(s). The THRE output signal goes MnmmPleV

%High Low 7 Site high 1/2 ciockc period later on the high-to-low transition of CR1L
High Hig a itsthe clock. When THRE goes high, another character can be Minimum Pulse i

________________________ loaded into the Transmitter Holding Register for trans-
mission beginning with aestant bit immediately following the MR

EVEN PARITY ENABLE (EPE): last stop bit of the previous character. This process Is Minimum Setup T
A high-level voltage at this Input selects even parity to be repeated until all characters have been transmitted. When
generated by the transmitter and checked by the receiver. A transmission Is complete, THRE and Transmitter Shift CnrlWr c-
low-level Input selects odd parity. Register Empty (TSRE) will both be high. The format of Minimum Hold Ti
TRANSMITTER CLOCK (TCLOCK): serial data is shown In Fig. 12. Duration of each serial Control Word a *
Clock inputwithsfrequency 11times the desired transmitter output date bit is determined by the transmitter clock
shift rate. frequency (1CLOCK) and will be 16/f CLOCK. Propagation Deita..

, Receiver Operation SF0 High to SC
The receive operation begins when a start bit is detected at SF0 Low to SO,%%
the SERIAL DATA IN (SDI) Input. After the detection of a%

Descrip~on of tandardMode a erationhigh-to-low transition on the SDI line, a dividea-by-16R0Hg t E..,
Dewrptln ofStadardMad 0 Oeraioncounter is enabled and a valid start bit is verified by

(Mods Inpu4.V..W checking for s low-level input 7-1/2 receiver clock periods High lmpaidsnc
later. When a valid start bit has boon verified, the following

1. Inltisallatlin and Controla data bits, parity bit (if programmed), and stop bit(s) are AIRD Low to Re
The MASTER RESET (MR) input is pulsed, resetting the shifted Into the Receiver Shift Register at clock pulse 7-1/2
Control, Status, and Recsiver Holding Registers and setting in each bit time, If programmed, the parity bit is checked.
the SERIAL DATA OUTPUT (800) signal high. Timing is and receipt of a valid stop bit is verified. On count 7-1/2 of t~rypical values are
generated from the clock inputs. Transmitter Clock the first stop bit, the received data is loaded into the *Maximum limits of

-- (TCLOCK) and Receiver Clock (RCLOCK), at a frequency Receiver Holding Register. If the word length is less than 8
IL ~~equal to IS times the serial data bit rate. When the receiver bits, zeros (low output voltage level) are loaded into the

data input rate and the transmitter data output rats are the unused most significant bits, If DATA AVAILABLE (DA)
together. The CONTROL REGISTER LOAD (CR1) Input is Register Is loaded, the OVERRUN ERROR (OE) signal is
pulsed to store the control inputs PARITY INHIBIT (PI). raised. One-half clock period later, the PARITY ERROR
EVEN PARITY ENABLE (EPE), STOP BIT SELECT (588), (PE) and FRAMING ERROR (FE) signals become valid for
and WORD LENGTH SELECTs (WLS1 and WLS2). These the character in the Receiver Holding Register. The DA
inputs may be hardwired to the proper voltage levels (VSS signal is also raised at this time. The 3-state output drivers Ci'
or V0 0 ) instead of being dynamically set and CR1 may be for OA. OE, PE and FE are enabled when STATUS FLAG
hardwirtd to V00 . The COP1854A is then ready for DISCONNECT (SF0) Is low. When RECEIVER REGISTER '
transmitter and/or receiver operation. DISCONNECT (RIRD) goes low, the receiver bus 3-state

2. Tansmtteropertionoutput drivers are enabled and date is available at theL Trnsmiter peraionRECEIVER BUS (R BUS 0 - R BUS? out ts. Ap lynga
For the transmitter timing diagram refer to Fig. 10. At the negative pulse to theAJ AiVIL WESlE OA
beginning oi a typical transmitting sequence the Transmitter resets DA. The preceding sequence of operation is repeated
Holding Register is empty (THRE Is HIGH). A character is foreach serial character received. A receiver timing diagram
transferred from the transmitter bus to the Transmitter is shown in Fig. 11.

fNo-
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RM~~*J 'Zu61-

1800-SeriesPeripherals

DYNAIC U ThIi. CA~CYRi5iC5 TACDPI8541 CDPI854C
DYNAMC LECRICL CARACERITIC atTA 40 o +UC. DD M W O 1110 VlH'& 7 VDD. VIL, 3 .

LIIMTS '.-

CARACTERISTIC DD CDIICDP! UNITS

Th"in - Mode@ -0

Minimum Pulse Width: 5 s0 150 50 150

CRL tCRL 10 40 100 - -

Minimum Pulse Width: 5 300 400 300 410I
MR tMR 10 150 200 - -

Minimum Setup Time: 5 20 50 20 50 n

Control Word to CRL IcW 10 0 -4 - - -

Minimum Hold Time: 5 0 60 4

Control Word after CRL tcw 10 20 30 - -

Propagation Delay Time: 5 200 300 200 300 nou
*SF0 High to SOD tSFDH 10 100 150 - -

5 75 120 75 120
SFDOLow toSOD tSFOL 10no

RAD High to Rsceiver Register 5 200 3W0 2W0 30

High Impedance tRROH 10 1100 150 -

5 s0 1I0S 0 15
ARC Low to Receiver Register Active nROo040 7

t Typical values are for TA=25C and nominal voltages.
Maximum limits of minimum characteristics are the values above which all devices function.

CONTROL. INPUT WORD TIMING

- tCuc --.------ CW-

STTSSTATUS OUTPUT TIMINiG

OUTPUTS

RECEIVER REGISTER DISCONiNECT TIMING

:1.4

227 I
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RCA CMOS LSI Products

CDP1 854, COP1854C
ELE'M ' CIC CHARACTERISTICS at TA' -40 is 2::*C VDD~t 1±51%. 116= m, VIH=0.7 VDD ViL-osVDD CL-A100 p e ig

%CHARACTERISTIC .14OM& OMC WS%

Traiiamitter Timing - ModeS 0V RmTiig- dv

Minimum Clock Priod. 5C 250 310 250 310 no Minimum Clock Pe

Minimm Puse Wdth:Minimum Pulse Wi
Clocmu Low " L ithevel 2 10 no Clock Low Level .

Clock High Level tH Cloc Nig Love -*n

5T4T 60 IO s D 6ATA AVAILAS

Minium Stup ime:Minimum Setup Ti-

1'RT. o Cockno Date Start Sit to

Date to THLtOT noDT VIA

Minimum Hold Time: 40 8 40 0

Dots__after, ___________10_1_20_30_____Ino Clock to Data V

Clock to Oata Start SitI= 0 IS 25ClctoDaA

Clock to THRE tCT 0 1 IS ClctovrL

tH~oTR TTHR no
__________________0__ -0 -S - - Clock toParity

no
Clock____to _ ____ ____ ____ ____0__100__1__0 C lock to Fram ir

N tTypical values are for TA-25C and nominal voltages.
*Maximum limits of minimum characteritics are the values above which all devices function. tTypical valuesa u e .

*Maximum limits 0, %ep
TRANSMITTER SHIfl

ITRNMTTER HOLDING REGISTER LOADED

I. £ TUE MOLDING ~REGIST ER I LOAND wTETALII DEO

T CCLOC 2HC OCUR AT LES Il 0.C 4IOITEFE is4 ?RL6 1DG OF 3W.AC R

TTHR.1 -. -C

I14 fTT

Ts"~

14. &AD- t ..- - .* p.- 'T --



4. P' %

1800-Series Peripherals
N CDPI 854, CDPI854C

A DYNAMIC ELECTRICAL CHARACTERISTICS at TA -40 to +61' C. VDO t6%, trtfz20 noS, VIH'0.? VDD VIL=0.3 VDD,
CL-101PFee "Of t. 111 ____________ __ V

1LIMITS
CHARACTERISTIC jVD0 COPISUA COP1854AC UNITS

*JV) 7p.t Max.- Ty p.t a.' __

Reeiher liming - Mode* ___ - - _

5 1250 31 25 30
Minimum Clock Period tC 325 155 2- 31 h

Minimum Pulse Width: 5 100 125 100 125
Clock Low Level tL 10 4 75 100 - -

Clock High Level tCH 5 100 125 100 125 n
_____________________ 10 1-75 100 - -

DAAAALBERSTtD 5 so 75 50 75 hDAA VILBL EST10 25 40 - -

Minimum Setup Time: 5 100 150 100 150
Data Start Bit to Clock tDC 10 50 75 - -

DAAVAILABLE RESET to 5 150 225 150 225
Data Available tDDA 10 175 125 1- - h

Clock to Data Valid t00V 5 2 35 22 2
____________________________ 10 110 175 - -

5 225 325 225 325
Clock to Data Available tCDA 10 110 175 - - n

5 210 300 210 300
Clock to Overrun Error tCOE 10 100 150 - - ns

5 240 375 240 375
Clock to Parity Error ICPE 10 10 17

5 200 300 20 300Clock to Framing Error tCFE 10 10 - h

tTypical valuesi are for TA=25*C and nominal voltage&.
lip *Maximum Nmite of minimum characteristics are the values above which all devices function.

7'
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or

CDP1854,* CD184

tcc %

RCiC O LOCK Products4 3 7 9 9 64
toca 

IGO-II CDP154C I-
So - TU "T110TO QST P BI 11 

0 . A
-Ho

A Sus o-
SnPL sLOC If X.A ODN EE

120 % -

64-A

002
OCR*.

CA 900

Pt I Go

% CPFE -... 40

IF PA START SIT OCCURS AT A TIME LESS THAN tOC BEFORE A HIG14-TO-LOW TRANSITION OP THE CLOCKI. 20
THlE START BIT MAY NOT SE RECOGNIZED UNTIL THE NEXT M16G4-TO -LOW TRANSITION OF THlE CLOCK THE START
SIT MAY KE COMPL.ETELY ASYNCH4RONOUS WITH THE CLOCK

IF* A PENING CA HAS NOT SEEN CLEARED BY A READ OF TH4E RECEIVER HOLDING RESTER By THE TIME A NEW
WORD IS LOADED INTO THE RECEIVER HOLDING REGISTER, THE CE SIGNAL WILL COME TRUE 0

Fig. 11 - Mode 0 receiver timing diagram.%

Dimensions in pole
the basic inch dim,
mile (10-3 inch).

DE AT A WORDO OP1IIERATING A
SIAT " 5-6 DATA SITS 4 STOP SiTS

5-.. SIT DA~~OTA DATA.IZOZI.M dIfg * ' %
LS MS airIT All input' anC

nletwork for a
Rescommelnde

and Opraticir
Fig. 12 - SerIal data word format2Oeatg

D uring opera
limit, care shc -

Isupply tUrn-C m
Iripple. or gro,

not causefV0
Irating

230
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1800-Sieries Peripheral.
CDP1854, CDPr1954%.

0 20 40 60 60 100 '20 140 100 1SO__0_

10-00

I~( (49- 293512

04

Dimensions in parentheses aoffin millimeters slid are derived from The photogra phs and dimensions represent 8 chip when It Is Part

the basik inch dimensions as indicated. Grid graduations ao In of the water When the water is cut into chips, thle cleavage angles

mile (10-3 inch). ae 5?" instead 0f W* with respect to the loco af the chip.
Therefore. the isolated chip is actually 7 mils (0. 17 mm) larger in

both dimensions.

OPERATING AND HIANDLING CONSIDERATIONS
1. Handling Input Signals

All Inputs and outputoi of RCA CMOS devices have a To prevent damage to the input protection circuit.

network for electrostatic protection during handling. input signals should never be greater than Vol) nor *-

Recommended handling practices for CMOS devices less than VSS Input currents must not exceed 10 mA

-a-are described In ICAN-6525 "Guide to Better Handling even when the power supply is off.

and Operation of CMOS integrated Circuits." 
'Aae pt

L. Operating A connection must be provided at every input terminal.

OperatIng voltage All unused Input terminals must beconnected to either

During operation near the maximum supply voltage V0 0 Or VSS whichever is appropriate.

limit, care should be taken to avoid or suppress power Output Short Circits
supply turn-On and turn-off transaients, power supply Shorting of outputs to V0 0 orV~S may damage CMOS
ripples. or ground noise; any of these conditions must dvcsyxednteaiudvcdupto

*not cause VDD-V55to exceed the absolute maximum dvcsbecelgteaiu eiedsiain

rating.
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TABLE OF CONTENTS %

1.0 Introduction 1

2.0 MAIN.BAS 2
2.1 Initialization
2.2 Main menU

2.3 Chain other modules -
-

3.0 INPOVR.BAS 3
1I Enter number of input levels P PI

3 S input waveform p.

3.3 Ent.er input waveform
3,4 Write input waveform

. Read input waveform 4

4.0 DFGOVR.BAS 5
4.1 Enter number of states 5
4.2 Save DFGs5"

4.3 Enter DF Gs
4.4 Write DFGs
4.5 Read DFGs 6
4.6 Echo DFGs ;

5.1 Save LF

5.2 Enter LF 7

5.3 Write LF
4 Read LF

6.0 RSMOVR.BAS 6
6. 1 Enter max:imum events 3
6.2 Enter processing time
6.3 Run simulation 9
6.4 S.Fve simulation results

7.0 PLTOVR.BAS 11
1 P'ot outPUt -

7.2 Plot i nput 1
7. PI ot s tate
71.4 Plot DFGs
7.5 PFlot requested function I .'.

7.6 Plotter function -
7.7 Load results file
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d) Prograinmer ' cul1 ''f

1.0 INTRODUCTION

This manUal is~ intended for anyone wrod-~r:
Iknoil edge of the inrternal contrcl Zrj" dc.i.zEt. .C =j +~ te
SINSAM simulato:r. It is a comoa)ni cn t:3 the rc: E inv.

ciso olLie pt e thi d fnp~i Th

is assumed to b7-~mi liar with the !?-i 1E
etasi c knowl edge i s espec i EI t-e1:-: f 7kI

The program 1 i sti1 rgs are f ul 1. c, m.- e 01t ~
in-formation v.:L11 not be r'odund-Ant! h..' - t -

manult. it-.ll e pla i the Z~f Z{*eclt±onv- 0- ih .'

that are not clear in the ii':LrL. .
if reference icn made to the,: -listinci- t --,T

Crtin sections in the Or~,!II~ jciar- - -z,:.-

The head inrgs are eiis to 1-- iate, bzc AAuSC I.:) e :-.
stri ncis oti asteri sf-s. Tro + L nd o!.(. fr j ' n L %q

particula-:r section of~ the program lstng ~t7
heading to trie same headll th '. r, 111ST19iI I t

appropriate module. Program ftmnActicns *nre ji Zt- 4c
module thev OcCUr in. All v-EAr.Latlera~ ir; th: T.- %'9 -

shown in capital letters.

%..d

%3.,

* 3

%mb-a%
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2.0 MAIN.BAS

The Purpo7e Of this module is to der 1 I t e- I Ar r -. c'e 1,7

b~i the simul ator d di spi 1 v '.h e ma . nl -T--,o i, t ~ii m E. r qe 7Lr
moduleS as needed wMith this- module.

2.1 1 N I IL I Z ATI ON

Th i.1 -ecti1ori ta- cc. c.Ttre of+ tht' -4rra. , a tl 3

Dsi-scr. Itt ors o:f the varicl-r.I' .rrs' re r-, kso e F, th1-,e
listing. The de-1ault driv-e (DRIYIE$) i _'a t7 '

MA2 iI N M'ENU

* This section displays~ t!- - SIMS-iM MiEINU, rI5 't 'el

the mai1n me nuL. Thi ILK'a z: the Mel-u +r~ 'h ~ kL1 Ii crr'

and +unctito-ns are accessed.

2.. CH,' I N OTHER MiODUL=

ftr the User enter-s i - ,. 1*_ n~: ri L m~rt c -,--T. '

-ertl ion us::es th-e- CHA IN MEF-iE i t
Lip Pr opri a--t;- imcd UIo to the P- en d c, 1) e m n mr-du -A.
invalid -eIectLon is mlade tl. = ~ ~ '4~I i~r

All1 modules that are chai ned to th rnJ.:n l moL1 - .1 ;-'

numbers which begi n at 91).i CdlIn.rotI i C~t .

the mai n modukle bv A G~OTO(. CU~Lommand ,l e.1

%%
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*6 ~d1 PrQgar am mer s !1 znu al.

p ~3.0 INPOVR.BAS 4.

This module 1loads the inpUt waveform into fnelnorvel-/r

from a disk -file. or -from the ke',-board. i.t I Irw c.k C u-
1~ simple editing fite jle4 and the abilitv to t-.e

edited version.

Referring to the programs listing. thie first task is to
displav the INPUT W(-VEFOFRI'I MENU., The menIU mferchanismf i~s

identical to that osf the main modul -.

.r% 1 ENTER NUMBER OF INPUT LEVELS

MU%.i set to be the number cof ll;3)t __,el= anb
less than MMAX*% (which was preset n' m&,,

If the input wqaveform i.s to be obtai ned ti-rcs-n 1 ei
Selecrti on 1) . then I NPUT'X Xs is -,et to the F-iDEm C-4 t!.hs- I
and a Strou~t me is called to read the da-ta.

I--fter the sub.t-rouk .0-i e re-_turns th2 I b.it b scd h3
is used in a n~rflter o0± modul~atf: 'r-):..t_ thalt the.. de: :

* read from tflEE. f4ile- i5-:t ,nccns'i ~i-nt v.uth oth,]r %iiOi~ 1i

For examplea, the7re is an error if M1L:=-,5 and :.1-1I : e'.]
re r e ied f romw t re f i 1 e , s o Ci wu u.i I -Jc_1e st toC 1. .

L 3- 2 SAVE I NFPIT W(tk2EFORM *.

Here. INFUrXX$~ i= set to the name c tha ± 1.1 e ;.....t'
i n Qi. t viav-t+o r m d A to.

3ENTER I'IFU WA 0OR

This sect ion IS. USed to read the i npltwaecv -
keb-d. N U M PJ i s 'sect to tl-e number 0+ji d .'' f5i. n

df the input ws'.'e+o.rm. Ae the v.I ue a:nd- sta-ri:t'asar

entered f4romn the kevboard * thi' a'~e rt-acI ir, ti .r c,
UY/ arid UT 'respec:t ive, v . H1  ChEI. I-McAde- 1-C =0E t. 1'

tevalupA is an i stecer great-er th. .:ir, zezro. *in 1nt.o~t V :t
than MU%.

I: r' ii, W D r

4 UFI TE P IF-P Li -J' i
ii± ia o. soe ned o r, t r-Ie j P I.,;.: di 1.' t r-, +.-, ~ :5~

L n'>,

L , indc n t nFtt rE

: 1.~ 1" .
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.,...,,-..

the i nout Val u.a :n d 4 b f-e fr I- h~ r e: I- h{ he
val ue.

These pairs are written beginninq with record 2. Rec,.r, 1
is reserved for the number Di: i npt pi ece J.MF'Lfl.. d t.

number o-f input levels (MU'.

7 5 READ INPUT WAVEFORM

An jIDut wavef-orm is read from the de ..-ul t dri .e :..(s.i n the t!.-e
, .ilename contained in INFUJTXX$, Tho file h. 3L -

- format as explained in the oreviou -ection.

SAVEDMU% is set to the number c-± i no' ,,- t e-: r.-- ., -erm 7-S. r'

file. If this "value is g reater ti n NI.JMF%. t-e, . :,.
to 1. Otherwi se, UV% and Ul arr,.s -r:. ini r . . -.
data read -from the input fi. le.

J...

Oak.

• -,-

%~

-e....
.' - .
*._ .4-

pk -

:-,':j

" _ s ... e~a,._'..s, , ..."€""" " " " " " " " " "" €'"" " ' - - "' ----- - '" " ; 4 "" "" "" -""" " " ; - "- - " -"". -"-".""" -""" " .""" "' .' " '".
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4.0 DFGOVR.BAS

This module begins b'/ displa'in the DFG MENi And -J ,_ jr . n,,: %
the user sel ecti on. ..- 4'

4. 1 ENTER NUMBER OF STATE.

NS is set to the number o+ .atec intne dWsin r t; De .
SiMuLl at e d. This value must bhe Ile ss t han N MA -H th11e Ti - . JT r,'_7.._..

al 1owable nLmnber of states. ore.-et in the a-: rn cou a e. .

4.2 SAVE DFGS.

Thi s section prompts for the fi1ename to' !:e --.t:r IF'c 1 n -
So the DFIjs can be vwritten to disk.

4. E'.TEF: DFGS

MAXF'- had been set earlier to be equal to MAI -- m .

number f. -) ec,.a alL iced in any one ,-
is used to keep trac.k o± the n umber i - .. r
- Iart 1 ',.l . i. i. n p uF t I e"v.e, and ma,::hi e t, iI. I- I E E, .

-for the input level , and JD% i s the i rde.: t, :r t1e ...- I-.

Ea,-h ... ec:e o a DFG is stored in twc, .arr - - . . ..
the ValLie. and DFGT() holds the start time. The , r -
be in ranoe, and successive start ti mes must fic

monotonical, lv incrasin . "i the "in d e "4 - r "t ' LV1
number o1 a DFG.

If an'v changes are desired a-ter t he arra.-. P)F::GV1 .D -
DFGT (i) have been di s -tI aved. the user i nout : h; t . , -,'_
number. value, and start time into J-., X%. and y. I
not eaual to zero, the ni ece rn._ ihe DF,- ,4i: 1i - .. ..

4. 4 WRITE DFGS"

The -filename in DF'GXX' is opened as a ri-ndom t i. I ,i
de a,..l t d ri Ve. The rec:or-d IL en th i b F. i , 1
two b:ts ,and +ieJ d 2 1"S our b.te""

Fc-r record 1 . t ' :L' Tw. I ; . , . I Ei- L I w C,

D er: -:. . the fi rst DFI G and the as- 1 b .
nunmber oi: i-puit level.. (MU%.) a5 the

number of i n ,hi e -.- ,N ') as the

t.i ro v:i. t h t -1- . ,n r- c: r I.: -- ,i c

current piece nmbe, 12'Y tracks the inop!t . r,,

, q t' n .. FG a r e w i " , , in 1' d i , .l I

1 -: k! 7 r 1: 1.

. .... d . 1. , , m ]- r ::V, .- k . ." I .' ':'] ;... , : ,- ,- " . ... ... V. . ..

U zp -.~ d -. :, :. . . 1 -. trn;- 
-

.e S A S ,



'Ud ) Fr, qr- asfinEr- s OF: r--. 1n

DF G= ariz? !eadl -from t he ft le n ame i n DFG~~ T:c- -- 'h
foarmat erpli*tned in the? pre,,"i.)s 005 i~m SO11' NVE'DM'fl
to. the nuktm ber- of+ in p ut 1 e 1  r: -rc' i - r a t' h e 1, 1 ~ 1.C .-

i s set to the number- of states read frcm t hfi £
ec-i ther of thecne quant ti ordife::r fi I~~m -~ F'ilt

% anorv, Ean en-ror J s rcpoirts-d tv -v ~tn I- I LI-l.

4 I- ECHO C3

T I-I --] C 7? I It- - D U ( T " I ) s ro i .e- v e -1 n* i 1t h

c r -% i - t h e- .L, c - n .( n -rr p r'V - i , ~ a n 1 - " - - o i v igg H

J~ -1i/ and DEB3T r.% 1%.J 31%.' 2fteur~~ t
iI 0<

an pee -- h crent 'DUG, Uhe j. c-c #~ .z-rit: tre-j
.2'.,,ethe -ol tl rt- 7%Ur %n ic tr ~m nt

N .



fd Frour armrier sflamuz v1.;.

p 5.0 LGFOVR.BAS

Th i.s.. ~ b(-g ~ni' bY di splayving the- LF' rINU, an~d3-
tl-ie usCer selectilon.

5. 1 SAVE LF

0%. P,~I t:he Logic FuLnct,.fn i = -ito b'e sa'E~., t-hc r'iz-ifriO t-, F i "+

i s s t c r-ed i n LFXX),$.

* 5.2ENTER LF

This section a] 1 *nw the 1 fi uncti or toc nc F~-c

kebad Y . hr>~ o I) dtc -.s. cut r) 'rlUml oI f cu .," u t I1 e ..

p~~ ~ -3sstI n: 11pci t lIevl C.,1 s, a nd e c h s, t he t, pco lb IA stiec

Edi ts to.- the L7 ':or- the -Ur-rent n rjutlos "n :
-Fe v if ing t he se Ix c~d th I e' d t-"i0i U i~ ..

T h L F J~v t,'i ur 1:ei i imt o ilhe .rnd r.,m 1 fz w, t! 4

in~.,.~l f I-XZ Ea'~ +ch- record . tijc t 'r-

The' t rE,'cv--I ni -.r the n'.umber '- "1' o-~
th numbe of nk-t({ flafiber' u-IF e: Slf !,- IH h. t .1

C con t in t he o". tpL.t D~ o fcr- 2 z iv 1 fl1* J.S !

t~~f t.e

7.- 'A dc-'.L.JA tr' d. ..P t' n th ; ot

h E.:' d'') '' uxib -'l' L .or m e= F 7p-

t~~4 hs r- ,b r -f in Zc

Z~~~~~~. P %IF-! r t

r. r - v i r .4 i, IF L 7 P

ft

%f



6.0 RSMOVR.BAS

T I i ',-iC UIJL! I c? t .aI-: -- L Ie 4nIp L t t .ja e f o r _ m ED ' 1 rd n F 0-x % .

c ompr:L si 4r t he mod el o{"- t he fThi re to t~ r_ s~ aw.
e:<ef.ut( , the '-j.muL A1 ti on. -

Z., ENTER. r1-;IMIUMI EVENTS

Thea ma,. i mnum n imb er o-f 'et t:-,- E. cr 1 drer r~ r - c 1 1
E VE r. I S/ Th i %a vlue Tmus.t not be oirs 7-tr 1-h MX
is r--r~set in Whe ma-in men'..

6 ENER POCESINGTIME

A -F n i p~ r cug:, i 11q ti. ;T. 2 - an b ±or ci d - T PF.L . n

c-hin 'El t h -ah t o cr d Urin171q t-h :i s ~rr r::4r- ' (TIE Ire FC

Tb h s c)J n t i c1 ar-Fi rdi i' n p ne fm, :R ec: 1 :. n,

EB- or e th IL =-im itio zu'- fl c-e! rI h' . he 111 t i I4 rt T:&T', b
iD c: f J. *i md sr -r d ,,YD. I N D% 1-7,'~ i svo: t':t-I , ~

.-At IU M e.L, r a r n- t hi eu mi tn run ar v I r

Th Is section i.s probably thie most smia:1-t!Ti pvo 9s
sincei.t r, -i-,m p a s a t he PLctu.kal ot1 tuhe C.. -

T! -ie Dr o or am f. o vj vit. to I bEn plaijecd tj iii, Ia~

Ab I -s- cor, nk. c r n prcqr- lin I tI r-11-1

~F' i r ': ..- ,b 1. r F. i n i t L i I.! i od ' .II
Ti-%'F :i arcla tifnp periocd , cpp iA l, f-'m -I r-, r, L

h r'~ e -t i nt Dm e F :r- pG p i ce u iiL,, r 1
1,9 e n a ( ire t 'J~ I~ o c n, ~ mb t ... ;... r .: t~ I l I

YL.cni LnI- 'the prevoL-sstae I-F' T I--14

4.jr 1: -1, -'4 '4.- ~r c

T- i.4- eI a -r

t 'I I

... 4.

TI..

*~~ ~ T. -a r~J..444 .

4--. %. 4-- - ~*~~ .4 * - . .4
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i.. % - %

d Fr o r fnm .E- r

If t * i r-,p LE f --i. qn-il CI ' * .-. dur rnq DrQC .e 1FIC -:- r, ,-

that +l10 e haf . i11 ic)t be ..:A c- ,-,i k e b hh.: . - .
i . - ._,,,---q... te timTe t_ 1the ne:' 1- chanqce ar"d Ee-'' i .i- -1 Ti:e .,' ....

t- s t - tiII" - t a- q • 'td ar .. r,

thE.:. the proce 'sinq 'ine T'FOC I i

A h.-t t hr. c.: p.t 1 ' 1 w 11 be -e t t h c -' ,n: , - ".-

p! r
1

i o, e .i t i.E mcI;.. F:-a s , e ci -Dn ti, v " 1. L', , o and I X, e, 4i- . ... the ...... . . . .

4:r-- (, t he ri npu.t :Joe-" , - -

(1 t F.1.0E dC

=a ~~~~~ ~- 3. "-C- ee11 1 mF

Ot L 1 csi cide r -Sf tIIF ffiEF± I. It- I'i

E- VE-i Ii~

t. L I ' r- ..I Lef r c - _

4- 4

"TiUF<7 -:-% ¢, : :E-"% ;•, f. 41 Lj Ti.rI Y r - ii>LCI 1..1,:; t_ . - cv . b-i. . -<..'

,' '.-'

- - . k

I r t n .. ci e d J r : th.- p,- t .

t .... ; "r_ "' -j I i ' t'."'' ,

E 'D 1 *L.:: -_. I c-l . : - ,

T- t 1' - E L 5 t :.Q rI' : U 1

n RE Yi
' '  

TY 1-D -- d'"z' 'Fwri 
"  

i" " "r)

I- C-i..i b v e .

I i i':I***.T' 1... . 'j.: .* .i"

I-, 1 .r-- t... ...... , ..

! 4-

5t r e. . .., o- v- j2 t h •

. 5. 5' *.% ____

c ,5.: r L ¢ z I UL , i C',! 3 ::~J T "r' ". .'".
-a t t 

-+

I",~~~~~~~ ~~ ~~ t :t I L . 'q "..... :? -_l", : j -i, 1~ 'rt:.;.r I ":'Z.Lti -2 !F : ;r: .[, :, ,''' "

t- : or. CL dl t' r-1 "ti !,--'iI( I j '" ¢2 _ *
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7.0 PLTOVR.BAS

Thil Lestarts bv di cp vi nq the PLOT -alEt!..id
P-Mo npti ng for the uter-' c c l,:c2tlcwi- of a. 4 *-- -%.Z-

0S 7.~1 PLO1T" OUTFLUJT

IH~~s 1!. _ _' "_ t he F~RlOY M n C d' V. P-d

h 121d tI-e code {o Ae t'.pe c:)- p1 - rrcieV-! E. c r.

s- LEE.; t to 'M f~ x, n. .2m
the o UtP U t IQ J ~ .

72PLOT DIIFIT

T he a r - a v F LT) is i n i t i -. .L dZ v, wi
inp-t siy n y -r c frm UF E 0 Ee Cc L S E- C- Ih pl t --,d

Input iqri :] ic ic t the' oIclj~] rv ,r =.
b L~t th In one eun byv t 1-1 he Fi ' !-eimsL .u

t~~ e~~: nuntn e

trL-crisitiion mccurr ed rj-ir i n-c the p 1 0 C: SI -IC Q 21.29.

F TO -AE

X'E S i is 1 oaded into FFLT% ).Nri i t t ci LA:.rIE-
is set~ to the nUmber of = tate.-s~

-. %
.. 4 PLOT D FOE;

Ii' DFGs are to be Pl otted, the tim ci C-a r t!yEC:n.
becjucted to correcspord vji th the Ou~tIDU. -r.

The i-put., DFG. 4nd LF -f m ' .'n ,~c s r!. m zc.,J F . ....

T MEF'LT rU r ~ n ti .. .1 ccle vjit the rs
-Irn-rn YL'L o 'I ut f -t in on .. o: n

7.~~~~~~~ 1. P1U iFLU T-n'h IJ

T.ia o 1.- o c! i th n*~ -AC . . . .

.1* 1I F! L

-fI

F. 1.F I0

*: 1. :T. %

Ji *0 r . . A P- - .. i ~% .~
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be;ct h I;. usi o-F CiF 10JI N' Th~ o r9f
1 R I P ed 1 iaing N',. ti:e fl~ffber c.+ ev I s an the IQ or; a t Le

Ii th- x s is plott,-d uzsa nq 10 eq- Q b an riLEraF.

T:'' ",T (the- a s-t e~nn orf:,f T.1~ 11 IT,1i.th

a 's p i. Le & "n c ,.lthe values 4 r or th 1- r u y M
chi1  1. ed t Li f Il th1-e s creQe(i,7-

The I.NKE'Yl- o r)n rd S U us ed t czi _: ow thle E-so key. tc-
ccrtr-c, I~cLt h LT MENU ::r in2 the c. 4se c' E)-1a ;DI ct

the DIe; t

.7 LOU-Th RE5ULTS FILE

Th e -t LI. 1. s i I e w~l~: 1-ica 1lramE: is. coitalned in R~~ S X. %-
re..Ad frof.- th1-ie ie +a ul t dri e For detailis a-bout the tra

of t h i c-F .I r E-:f er toc t he SA VT EI 1LILT ION RESULT3'S Sc.c t' .i on
ofj t he RSM 0VPF r mo dule 1 e

7 . 'S f' 1 _1 1- D F T ..nlE E ILE

To be able to plot thie DF~s correct]./ V.the tiT.,- 1cs :?c

the DF'3sz must be e-Xpaznded tc be e-qual to the':a T.3.m %-J~

the -upIfl-nCti on. Vf--LL". ( ; is 1loaded v!ith th .. t 2ct
the 07GVY r rrv Ti~ I M I oa d wav t h t he v a us cD t4'he-:

D 1 1 a r .tv.N" IS se~t equal to -the nukmbe-r o' sta-tes.

% . %

Ow1
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1 l' REM MAIN. BS MODULE

1002 RE M *****-*~ : *;*4~*-**t*.*~~ ***

1 u REM This program simu lates the behavior of simple asnchr.nous
1 )4 REM machines (SAMs). The simulatioM proceeds in an event-dr-..e .

i' sC FEM fashion and provides for graphical outOLtt as 1,eli as tiLe-
jIk lo, REM oriented input and output. It is assumed that the u.ze-

. 1 'k REM i familiar with the contents and constructs 01F tile p.a'----
-' -0 FREM "Realization of Asynchronous Finite-State M-achines," bv

1 4 REM Johnson and Kaliski. For initial storaqe allocation.
E 1 -  M values +or the following ke, variables wi 11 be- pr '-e,::

S11 SC' REM"
12.0 RE r NMAX%: The ma;..imum number of di-.tinct state ,i n 7-

REM MMAX".: The ma,.,imum number of distinct imput le'.es C2 I th-- M

1 -240 R EM MA;XlUl: The ma'-,i mum number of pieces allowed in r I nlnU1 171Latl .-.71..'.

-12e0 EM MAXD%,: The ma'<imum number o+ pie c e al owed in an, DFG"
123 REM MlAXY% The maximum number o-f pieces oresent in Lhe ,-.

17 0 C REM output signal. To be consistent with t h 2 ,T . d
1 .32 RE M SAM model., MX MAXIJ'i . MXDI D

1F' REM The',, will. be preset to -the +ol.owi - .14'auE-. , 1_te ,... . : %

I REM can be changed at an, time, o cour-se.
: 14 D .:' R E M ..

14-20 RE Irl- M-.
1446 pr Nr!Ay%= 9: MMAXl=

1,L4 6( MAXU% 3= ' MAXD% = 8
!4A i) MAXY% = MAXU% * M1AXD% /

'.15 0.0 REM. :

R I:EM To facilitate the writinq of a common =ubrL.ttl.
. 1540 REM for inputtinq both the SAM input siqnal and its £,FG.- .. - .

156 REM set the vari ablI e MAX to the ma' i mum of MtIXU.' nd M::..,%. 7 -,
19Th REM

, 1, & IF MAXU% MAXD% THEN MAX' = IAXLI'" ELSE MAX".. M Il "
. _ J REM ..-.-..'---

1 1 FEM
P: 1660 REM The simulator uses arra,'s to represent -i F,,a. as v-.:.i I "*
g 6SC REM as other key entities. The! ,l"_ ow.nc arrays c:mrl Es the

12',) FEM si mul].ator -' S data base:
REM %

1,-0 R E 11 UV"' MAXU % The '/al ue s: o t i-.i e o ,-es : -e :p. . - . " ""

" ; REM in tempcral Zequence,
NRE UT ,MA"IU%', The times that tne di i Z 1 . + '..-

1, I-CM -unction be-in. startilnci h ti e = .
t{S-:, I-LM DFGVm (M s ':. ' I :, ! 'IMA'( NMA::X%,,: EFGV: . ,,1,J. 1 r :r - : ..I . _3: ,0 ,: :

cf the pieces of the i, i th DFG- iF: nt 'r 5A'A
G D'1 ... ,., r,-'7". d L -n t,

I. ,' - FEI that the pieces .,n Li i_3t I-FG cl:. ".. -'.n.

1f R, E.M with ti. me
-. .E ".. . I .,; The 1 ,-C o+ th-e pi ee.C 5 :: - i- e C, e <. -

.71 u o t:-.u . u r. L ,.D in temlllporal r .... .
F- REM ; The 4:-1 (r', <= r.- 1:. rl - 1.1. 7 . 1 c1: 1e . : .

I p it :. t. ..tn :t i r te.-2 J .n - t,r 1.. t c Ir.
i Ii !h •-q i r .. .a .... i

C',.,", F7: : ,.t~e r'.rl:,er c-,- pi. ,c"'.r i SF03'2 -A=.rt 1 in sha' .. , 
' [F:. ., ,

..:.:.,.

D ° "." .. . . .



%.°o.

21A) RE M LF% (MMAX"..NM'IX%) This array, contains at enri,_ ti-ie
2t 6 REM logical function OutpDut value produceO icr the
21S; REM ith input and ith state val ue. ..r. .

220) RE M URES%,(MAX'Y%): The temooral Vales ot the r!M InDt .o.-.!..'

P 2 .'.. REM at each system "event" time -- see. bel:ow --- ,
REM XF;EcS-*MAXY%): The temporal val ues of the S(AM s... ate

226 0 RE M at each system "event" time -- see below ,

RE M FPLT (50) : The si mul ator uses. t1li. a rray to .. 'v.': t' e ..: lue,
R' E M for the asynchronous signals to b= p 1 ottEd later .
2:S2IIITM TIMEPLT (5C)): The start times aez-.ociated with e-h ,t , ,...
REM to be plotted are saved in this array. ,
REM NAM/: Thi- variable contains the identitv, u n'::tA..

4 4 RE M to be plotted. The i d. is the a.f. e a t . A,._f.. . '....

-EMl to sel ecIt the + uncti on in the p].ot m en .
S.'1 E:t"II SPECS: This var iable ,ontAins the speci+ic _-,e rI + 1o c o.ni,:h

. REM plot is requested. Such information -.:. 'e-t '2

.-. REM function, the DFG and the LF used, ar .. d n T: r- "i.
2540 REM variable, provided thes:e have been szt ed. -

R' E. EM appropriate +ile name fcrmat- given I n I r- -,a f(.

REM CODE%: The va- ibl _ 1,, if due to . . .
(W) REMI non-zero processEinq time, an c.Lt" ever- t - "-.'-.ni 3

2rl previous event i.s= still beinq 1r2 1cesE:! 'r, th '.. .o. "°

-: REM run for which pl,ts are requested.
3 G, REM YAI.Lt50) This array is used by the plotLer sro-. na to -

. REM store the values of the di +-erent rp1- cc - the -"

4132- REM Function to be plotted.
"B.4) REM TIM(50): This arrav is used by the plotter sutro..t i nc?. a nd

,- REM holds the start times of the pieces tI re .In ct.r- I:..
RE-M to be plotted.

V 'E EM LEVELS%: The pl.otter subroutine requirev the i +rrve'-Et

H, EM ordinate value to appear in each plot. Thi .- -ed
F" E M i n LE ELS; L..,

' 2£,A,0 HEM "-.:"-

W.: "v .. .'-....".

% %...

:".... .. ;

*: .--...



% '

RE M Vf**** I N ITI f)L 1 Z f.)T IU C) c(*( N4

.,1C) REM The arra-s are dimnensioned a~s above:

REM.
DIM UYY. (M XUX * LIT (M4lXUX * OF SY. "(I'(V\ LX * ,MMl,.\%. NM,,.isX%.

Z'DFI T rlr)-E~. M(MgI. NriFX--- YV",(M(-XY'l%) ,y T(MAXY/.)
' ~DIMi K MAX*/ MMA X~ %, NMAX*C LF"% 'MMHX' ,\% NI'1(- .~ A uRES". mW~.',

DL LI M F PLT- (C0) , T IMIlEFL T 5 C)
IDIM III"'LL% I( ,* 1 (1'
D' tR IYE~ F. ' e-fault drive for fl1 ie3

~ Il~I REM

*~ ~ ~ ~ ~ 4 Il A I.E N Il E4 N4* U~1 EL(**4

.e, ' CLS
141 L LL A T E 2 .4 : P R I NT "'S I rN S A M"l

L- 0 LC A -FE '4, 19 : PRINT "copvrlciht (c) lq85 NortI-oaBteLrn UF -eriII.'
730' F GR I 1 *T 0 1' NEXT I J,

C LS : LUClH PR I~' iI-KET " S I Il S A M N L"
LOCOTE~ ~ ~ - P)IN U -- EtrI t Wvt orfn"

- 4' J'F~E ~ ~ FR I N T ' -Enter IL vj tliul~ V nEer.r*r_
'7 L'0i AT E 1- F RI ~T P n-- t er D 1qi.a 1 Fu.n :.-.t or Ger-.ra t r-"

LOC&IF R r F I lT " 4 RUn si mul at 1in"

L0 CATE IF1 PRINHT " 5 Plot re L-;lt'5
* LDH- 1 '7 . RI N T " 6 -- Set de-faUlt dri-"'

LOCYiTE I- r? . FR I N T "--E it"
LOC~l E 2f C P RI NT SF0 (0 e*4.
1.- 0C iT E 2( 1 NFUT "Enter sel ecti on b%, number ":SELEL f'

PEN f$4* CHA IN OTHER, MODULE- )x *t 4
RE M .

-,r SELE T',=fSELECT.OLD", G0Th] 900f"-
JD*1 c3EFI.FCT% tOTO -41,1 '-, 4:,-,, -.45Q' :z' 747 O'', T 1(.~~

4 2i7UNL ,2 GLJru 4 C
-. 4 T riU Y "D ef a u t d r1ve " RP)' G''F 0 F Cii 5,

P- C' -'4Li4 Y s=L I ,E &-$ LOF-L'VR" 01
71' 4 -' kU'F SF' L AYs $ D R fI-- .S - F1- 0' V~ I 2F: ' C 131TC', 1.5.l

E - . ....

'7 - '"'.

F . L L-''. T'.

o.1
V V4 U

4
4

%~4

-A. A4'



i' 9 ,:,,, REM 1INF1OVR. B? MODULE-

JiP LREM Il%

1I .C,,:( C L S : L O C A'T E 2 2 2.. .. 11 P U T Vi f V F H 11 11 E 1
1 L(0 q IOCATE I 1,25t : FPRINTI "1 - L oa d inpuw t w a..et :o rm t ro .rti Ie"

1 0 0 LOCATE 13,25 : FPRI NT " 2 - i t er i.n p Ut Wa ',P f (Drm -(Ti~ t ! .D ! I.-Ilr 
'_

L x6< C IOCATE 15. 25 :FP' INT M,- ,odify input wavefor-m in mremcro
I 1C',080C LOCATE 17 25 FPRINT ",4 -- Exit to main MEDnLA" '

C-, 1 1 0 0_ L OCA T E 2 .3 "2 FP R IN T S FC (4 0 )-___:.
1lC1!'0 L CAT 2 ; 20 I NF'UT "E n ter selection bye nt.unber . .. -,1j-.L*b L ...
I. C014 C, ON S UJBSEL %, GO TO 1 019 0 . !18 0 S , 11 740 , 5 0" '

IC1 6C, SOIUND 20 ,'2 :GFITO IC")

101 S,:. REM .#::.,> ' ENTER NUMBER OF INP'UT L E VE LS , t t f I , .-k.-

"-' -'- "7 -

S 16 REM ....
-1 I:C1 REM II We begin v obtaining the model D, r* mote . e - '.

102 R. REMr to define th e specific SAM beinq <S1imUl1t. . ...1q ( 0 1 CLS : PRINT "Enter M np: t M A: t+;" r tI r,:,b ( ,.D : r ,

I 210 20RINT
.12-, LOCATE ,INPUT "M = "n Ml o

' 40 ON SUBSL I F MU"/GOTO 100 G11)" 1032Y:)
1 (. IF MU% C0 GOTO 101I3 0

-1 w2 FeRI n the ntitmber o iodel nr. e - t .. t. - e. .

1034C' GOTO IC)2 60 .... " "
p "3;)ON SUBSELl GOTo 10.)l440., 100 6 C)"C

0400 REM Inptt signal is in a r-An d om Ee -'-". 1 '420 REPR I
1 C"-- FIR IPT MNT -

dc I RINFUT "Fi. name nor input i ilHF ot f

i ,: GOSU 125a0ll

I . . . 5 O ,":, -Test Q "bit' t_. . o see i.f 1 r)PL.t r :-d C : .: P J: , * : .l: - r,.:.. .-

1 IC)4 IF Q=- GOT U T "t, " ""

, 1-'5-' N -m BE'' GOTOi 1C,4m *t), 1: .p nt 1 t mu:,._' . .-.---
I A iJ0TC

;0d :EM Input sigral a tDi e obLmAned t .

:.'." ~t~ 1CE , NE saffe r--, ttine F.EA)DS(. +(-_t t,:dl :~ ~ l. .;r i:, -;, :- '{:5 ..-. 5.. 'H f EM

PAM! &D~I' 1'R 0 1NT

' GFOSU 1 2 E,. P .:: Ak0. I I - . L~ T i W E.•

1 !Z): .." 'I T-t0 'b t o ~ e t n u a r "i. " ."".*__

*': 1R L "i. rM he v,_t:. fu -, cti r u er ,rec,' i
1''.I J'' IU T ' .

r e ) r d s n the f1in. .e .- c:,3 - c -t "'.

1
+ ,i .2 , . ,  IPEL '..b i _ I'mL-, ,J re .F a.EO 1 -- L t'nO i-_ '-, in.,.: . ': . r: . J .:.- : . : .,- . . . .. .

*:< 1' . ' ij.,J i .......... ,m .c

j! ':."_" H ... : c-'" h r , e , c c r 1 f. L ,. . . i. ,:i t - t :: - . .It I-N v



, L-

Ci40 REM sav'ed al1ona with the rssutlt - 4 rom am; run Ljifl1:- e 1
1 6 ,E M inpuLt t Th e LtS er muLtst b e aler te-d totm n(D t hc i .t

I -9 CPR IN T "Nt e r t t i f ah run Lt fI th-1 01i I s" n-I %

I C). 0, C.'' 1' I \2 t e re -l = O .1 -',-n U 1V7 -- 1E l,- t -A

11 '-~ PR1N T "'input -funct 1 or- wh i c~h twa;a usa -d " FI

11 ' I NPUT " S a'e i n P Ltt 2 Y es 0')~n~ aR r I;i CF,
I II F "$'V' GOTYO 1 i,1

I1 2 1F Z$ "v'fOTO i:cc
1 ~ ~ I 14' FlMilpLA+- is t-o b- "-

1 1t F R I HT "E ntLer -f i1.e nA ME LtnIO M 1 ch 1 ript:~ L o ,
Iv' PFJINT ''in the form lINPLJT;.j~, u vh-i I--.'.. .

1 NPT"characters. "INFUTX' e~

G*1 OSU~B 121.2 C) al __ SH 1-- 1.:t.:E F

1 1 GOTO 1 CK:100

1. 1 1t RE M f ::~: ~ ENTER I NPUIT W'-YEFORAl' t 4. f4 1v A"

C. EM

11 I' THEN G**4'13U11.4UT11'.ELSE PFLDc:"i4

11 "' 0E T 1-34
14 F'FPRIN'T "Enter rune o thei

14 -1 1 NPUT UMPU -- U Z-

1 . ,-: F I IFhckt N M%-: SzMH LtH t .hIa I.- VE L2- U

.57t FOR Ji ~F 4rMPje.
114RR I N T "1e' o' 3."

G ' IF U0 11 7.) r elI 1r.4

IF 10c'0 110T 72f-
I'fH JT L1 T-l' j 1.- E , k, 0 1 b E 1 1 m

p'.' h e c 1 It -1 ' d 3. sI--i:-

.5.F

-- Dp

1- ilL - FOR 2%=1I. I'
P~~ F,'5.H"-.'

V..% 
.%

jr * ~ - ':>

%l. .'



1 PR I T "Enter c!a ge' i -A: n:L rIi?. s e- r- (Tii

t' i me

1 1 FRJNT "To enid enter- #: o{ K
1 V- -,41 1NFUT j'/ .%X Y

df 1 : L 33IF* J,=,) C00 L,-

I '~' IF j.:NIJMIPJ% uA~r ''

IU V ' (Ja X~ U T 1, -1 ~

L 6-,)D dF0-10 I1 o

F, fE rv * tV3U BUU 0LiT] 1F N .' E W1 R i E
F N Tn i L Lt-o~ s r iE, ~ r 1f~ . n rUL,

4C, R -1 edl. 'The i nput 1~ rz n'ta' n-~ t.hoee Dt . . .

12 1e M.h prom.tpt tiLme.

%S*%

LSEi T 1 TJ

I ac FUR PU.#IJ U% ' I I1IVi

1 eINEXT JIUJ%

1 S' LEE T' I i I- UF')- %

IUFUT 41.1
12 ~4 CLUSE 1.

RE [UFNdU

1 FL EM #,: f. f 1-- R E A I 1\1FUT -f W F J-, 1".~ . t f -. . *4 * '

I ~4U RE M

1 I-.' PEN Mh i '- ,Lbt-OU t I FnS ~ '' r' d i0 Il I . '
-flen pr 7 Ei i -e t!:?r, d *n, i' 1j 2 .

11 1- E'!..1 L 1-.

Ei Rf VE s b I H rI F 1,.L EI' +.

I~~~. -s FEMF

LE I1. 1. , :mfJ

, 7l S A",)E D I I* I-J I F .,K. I- - -C-'' C'll i %I
RI- H[ Iri i C- -- i.eI

1l F, Ll 1FA Ih n I' t

"in J ''

rip



e-

IGET #±4 J1
1 4Jul",= JU% -I

JLI ' , J U :z:CV'1 J ,Y$)

t IJL T JUC

N.-F. E LI E Ni

411

JII-



F. -:EM

RE M
1 LS:LOCATE P7RFF'I N T "D F 13 M E 1'N L

1 LCAITE 11. 25f F ~I NT "1 2 _~ LWte- :.fr -Om 'e'*

Lq 1 ''e' -' lrTE 1 5 P RI NT 4 l l - +E L Fl- m i m-n-nor

'1 '9LICA-TE :*' PF1 NTr EF'C
1'i* 1 - LOHIE21 1NPUT Ernt er se1 r( :non mfnlmber '3L'.,3..EL'.

1 11 -') S.1 K I T-)nE .2 13OTO (1 .11K 1'5

REM
I I1 REM N '* ENTER NUMBiER OF 3i1 FES A-.

1 111 RE M We beq1 n by obt-c~ r i q t~ h a in od Ei pmr fn E-~ 3 i -C

X. '') FEM to define the specif.i c SANM b ei E sirI 1t d.
REM

C. L'S PRIN, T "Enter N 1"NA~% ) t he nLA~n t-r C+:.t ~
PRI NT

1' 1'. N\P UT 1\1J
I F I1S% :N!I 1G(F '~

1 '1' IF NEX :: GOTJID lk'280l
1 .1 FRIT 'N t th e nUmber c± L . q''0 ~~

GOTO128
U -I ,'i ON-. 3UBSEL% 130TO 10 t C- 1720)

10 4 ~ "1 i'%PU T 'Fil 1 e namne from whirri Df(- a- to bs
1 '4 '1 ~GOSUB 126 60 E.O.T{

('144'10 REMIl Test 0 " b it toc s ee if+ OF(3 r e ad rn -f i I I.i2-.

11:9C REN witni the currei- SiM
1'''I'. Ii:F C=1 GOTO 1720 ELSE I"'' prop c c-, f-orc I-- p~.J

1 1' FOR I11% = I TO NJ

'~ 4K)FOR J 1% 1 TON

-~~ ~''c2"' NEXT jIX -?-'
a~ I'oL':NEXT I117/

G-' (0 TO0 1098Y

1'.J

R- E;! Er-t :G

1' '-*~~- '-' 11. J 1t T l 1;- ri D!- 1.3 f+ P 'I 0 . LF

I-r t± E NU I.-:l fn. riL iLurI NIt' o' pr i1 e 'F

4 lIE'T 1

1 41 'IJ.

e-r e.e



Wkb .. - IA'.iT 7-.TX .. %-LrL~lwtl. -f. Ir. ~ 77171 TV F j- -.1 -F. 1 -7 ;

109-1 REM 4k f t**** SAYE DF (3 *:* ***
I:C972 REM 

-  """

10980 FPR I NT 7' :
11 u INFUT "Are DFGs- to be sAved? Y)es or Z-.

110 0 I F Z $=" " GOTO 11,: of

--

1 1 CCFPN1 01C40 I F Z$:3>Y" G TO- 11 .i','  "

11060 PR I N T

11 INPUT "Enter file name under which DOF i* to ba_ .-... u'
' 11 iit) GOSUB 1C-2-0

111 20 C GOTfl 1,'"
Ii !0 REM

I 1171 REM * :** * ENTER DFGS : **** . -

11 2 REM
i 14': FRINT

. 1116u REM :.:-***SUBROUTINE READSG****
1 1180 REM This subroLutine is used to enter DF'3s.

PRINT "Enter number of p: t.'C.sL , H.I. 1 - A- .')

1 22 INPUT KXMAX%(ID%,JD%)
1 40 THEN ,-TO 112O 0 EL'SI -FF:IT " it

1 -'0 TO 11220 .H..11

.... 112 F)PRINT "Entc--r wavetorm in the ._rmat: . i, c: I-Fd m= . - ,

! ii '::. - FOR Jl=l FO KXMA (I:'%.JD%). -
11 PRINT "piece #"J; -,

17 1 I3'i I NFUT Di--V% (J% ILI'.,J D, ,D F G -J"/, ! , JD )p 176 REM Check to make sure that l.d:qv% 7 :d% .1%,.1. rlE

SIi IF DFGV% (J%, ID JD) .1 GOTO IL 4 C .. ''
" 1 !.4', I F DFGV' (J% I D" % 3D NS% GCD -r I L :

1- F. PRINT "Sat e Iei I,'t o+ range. "
! 144 GOTO 1 130 re--enter 'E :e"
1 1I 1 C IF J 7=l GO'rO 11600 :.

1' 4; 0 IF DFG " , 1 ) i%, '/ DFGT(J%- i, I0%,Ji% I I Q'

" "fme m, t be monotcn e i ncrea-si n ". GOTO 1:17. %.

I1 ' F:EM Check # o + dist: lnmct Ie_ eel
. F 0 ' L-" O I 1 -

115 IF DFG2% ('. , 1D %7, J D DF!-' L ID' '.C G ,T0 1 'S - %

1.. IILJM1% = NUM I%+!
1 it NEXT L%

I NEXT I%
! 120 F EM Echo wave± orn :uz - .. 'red

P P III T: PF:'INT 'The ,ee+ zD i 0 1' r I M, . . . -:,

iPRI N T 'Fi e c e It''Tf4E P K' I k) 'j -1 e ' , :-',..

[ 7,-,,- FOR: J X-'= TO !..X1< MO ,X . ID>'. Il,;. n...>

11. .' . IIE'. FI "A , ,hn3%, ,e : ~ ( )c : . _,

! 1 ;'S :!IF .. .. '9'" I-I' : iii L I:.

Ht H 1:- 1'- 1 1"o -
I Ll T K ' I.



DFEYAJ',, IDJ/, JD"/) 7X-': DFST& (,7 1,T). J t '
1S2TO 1 1G 84C

11P4 FRINT "Piece # irntst int e:.ceec; "ib"

1EMG-TO 1840

:1. ID EM

.'.1 REM
1 ti S cUbr0Uti me I S L9SeC9 tn( 3'.. ce D ' In

I' F-EM :

F-DRIYE"Ih TH
1 OPEN FILE$ AS 11 LEM=t ,.

20 - FIELD #1, 2 A 'E 4 '1 ]$ .
12 14 J 4
t21tCO FOR I2%= 1 TO MLI%.
I i ' - FOR J:%= 1 TO '.!S% S
1 'C -J5 1lJ4%. + I

1 - ' - L S E T L/$:M 1Z I rf x K 7 MT" 2
F UT #1 J

1i . 37% = J4 -'- 2. .-
.. :,.4 %J4 + x illMA ;x .[2% 2 - -

1 ':,,K £, % = 1 "

12FOR JD% =3% TO J1%"
1 34' LSET V$= M [: I$DG VfD.- I2% .J2..'

LSET T$=MKS$ DFGT I.D%. 1 . 32-
1 PUT #,3JD%
1 1 ':. KD%=KD%+1
1 INE XT J D%
1 41'0 NE X T J I

1-' NEXT I2%"
:12430 I-SET1 V$ = MKI$ :XMAlX" 1 '

.12500 F2 = MU* + NE t . .'.
I -5 LSET 1$ - MFS,;I:2)
1 -' UT # 1, 1

CLOSE i!:1
12 -RETURN .

FE M

17-: t . SUBP - i I P I E. PWL F IFlG

• 12 - ' I-riE: fh1 ,: u .ti v - ....... -." ,eU>>l," -J..M I el enter ,d Enqrd .d-.-,, ,--,.

• - ..;-

1"2.:°0 F11- DRIVE:$="B" THEN WI L- E$t:'1" : E',-F-.' E FE F . l,- - C' . ,

OPEN FI VLEc It' I I...II J- i-. !'-
FEN LL' -f #1 .

;:. ,..1.'-..i

.t ...



.-

d, .,.?

.' 4J.'
p1i8& c SA'VEDNS% =~ (F2SAEDMU%) * .o_

1288 1(9 IF SAVEDN% NS% GOTO l.:c'o _.:
%

, 0FOR 1%--1 TO MLJ%

1 2 ' FOR J2%= 1 TO NS%
19 J5% = 34% + 1
1 .]7 GET # .,-- 

.I 020 KXMAX" (12' , j2 = CVI (VY$"

-i0 F4R =0% + KXMAX,12%,J 2 + ]
I'08- I<D% = 1

F0,:) F R J D". = J:3%-" TO J4".'

1 - 0 GET #1, J D
t. 1 1 4 DFGV% (:D% I 2% , ., C V I V"

D J:D4 2%J .... C CVS T ,-"1 l:1aC DFGT(KD%, It, ..,, ,ST'$ .K...

171 0 K'D = [::D% + I

12NEXT JD%"

NEXT J. 22-
1NEXT 2,2% 4 .iN.XT

C L. CLOSE # 1
" 12RETURI.'

RE1 . " ,M Dimensi ons 01: DFG speci f ied are d, f-erent f-,ca i -o ,

8! M cur-rent SAM. e
IF SAVED MU!.: MU :. G0TO 1 -4 60 C

I l IS IF SAVEDNS% NS,% GOTO 1_:4, .:))
1 .0 PRINT 'Dimensions of DF G sa .ked in fi. t e ceeo too o' eC
1 *100 PRINT "current SAM. SimulAtj, n will use c rrc,,' ,: ED C :1 1 r o"-S'''

. 4 FRINT "of DFG. "

, 1 440 GOTO 1292C0 conti nue r-ed .

139)0 PRINT "Dimensions of DFG saved in +iLe arfe? , h. t6h:D,:"
1 .4'G'-0 PRINT "of current SAM. New DFG ma'.. have tp he en,-rsd.

5 = 1 ,rr-r "b.
1:3520 UCLOSE #1 ' " '

I - .54. ikE TUFN -..

1 35 REM

1.':5I REM E *C**.:* ECHO DFG S *t:*::,
,-- . - " . REM
:.: 1 C' REM .. ,".

I ,, ,', .Mh ' ' ,,. ...' L .ROUT I NE E -iODFG' *L ' .t
.: ,:, PFM Th i s sub rout- i ne i tj e7, ' 1,:; .r,1 :j,- .'" .

*• I '-,-, PEM FI N ,INT
1 . -- ''.' R I N T "'' r G ( [ . ''r

1 'K'FFI N " l e c e '1~ 1'i 4t . ' . ' ~

7 40 FOR J% I TO IXMAX ,'I3. XAX
3-'.SC, F-P;iNT 'l' P (K ).J%:TA 0 1 P I{'..'% . . I: " .. l"' ::' .I:-" i,,T. ,.1.. [ V: .. ' .," "-

1 78 ":' I NF'T "-ny han B I . ,

1F XT,:.. 'EN "11IFO 1

S. " ."% " ' T•• " .% -. "E "." "••J •"• .".-.E" " .F. . . . " ." " • " ," - . - S " " -

." , w • - -, ' .. ' , , - ' - o . . . . . . . . , . . . . .



.-: . .:,

S1386C0 PRINT "Enter changces in the farrn.at: Jlece *4. v.lt- :and s:tart

1:788C0 PRINT "To end enter piece #* o- C)"
1 INPUT 3%,X/,Y N%

1 -797 IF J%=(") GOTO l1680
3 9 ~4 fIF J%'+>KXMAX% (I1%, 31%') GOTO 1 400.)

1 6uDFGV%(J%,.I1%./Jl1%) = X"':DFGTJ% 'I11". J %*' %

w .
%. .. i.

t 79-0 GOTO 13.900
148(- PRINT "iece # must not e-ceed %

:140 E GOTO 13900.)

65529 THIS IS THE END OF THE MODULE

% •

116 1

*,- .4.-

.4 %--' 5.
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0.

lobL

9o REM LGFOYR.BAS MODULE

1' C') C, L LOCATE 2,3-: PRINT "L F M E N U"
S10020 LOCATE 11,25 : PRINT "I -- Load LF froM file"

1i0(-40 LOCATE 1,2't : PRINT -2- Enter LF from keyboard"
10060 LOCATE 15,25 : PRINT "3-- Modify LF in memory"

C 10080 LOCATE 1-7,25 : PRINT "4 -- Exit to main menu'"
C,€ t100 LOCAYE 2 3, 20 : PRINT SPC (40)

1 ) 'I , LUCATE 27, .  INPUT "Enter selection by number ",UPSEL -,
10 14' ON SUBSEL,. GOTO 10200 10280 1 C28C' 5000
1 :l SOUND 2,)2 " goto 91-0
1 0 C) LLS : INPUT "File name from which LF is to be read ";LFXXt-.
t)220 L;OSUB 11760
i 2)24'- G TO 1 C)00 C')

REM
10,20 FEM Enter Logic Function generator (LF)

" L ! T CLS
1 7:2 PRINT

GOSUB 1060"".

- 51. RE i "I* . *, SAVE LF : : ,

I'':52 REM
10 60 REM
I o0 E REM Prompt to find out if the Logic Function generator jiust entered

REM is to be saved.
1C)420 REM
10440 PRINT - ,
S1'Q2 6 INPUT "Is LF to be saved, .Y) s- or No "''"

-I'48LS IF Z$="y" GOTO Ie-0

16 50) IF Z $ "Y" GOTO0 5000
! 1 5 2') PR I N T

1 '51.C! INPUT "Enter fil e name under whi ch L.F i: t: Le s-na-. ":LIF: -

! 5.50 GOSUB 11300 .*-,
.1 (..)5! (.': GOTO 1r 'r, " '

1. ,590 REM
- ( 1591 PEM * : :*:,: ENTER LF * ':* -'"-

REM1'9, PM This SUbroutine is used for tnhing *he arr'v L-F Lic F- _

6:EM in ger" =.krat to ) . The arrav haat. d!imetu. r-.e MU .- e
'.1,'T. !.EM -'ni:er c- i put 1e%el s and I - h -umber D ' .- .- -.

E. .: .-r- at tl-e beginri, g of the - - C) ts t , rn i 4t!-,+ e

-1 ,:'_'T FEM number :) f di t inc. t I eve:li . i, - h - i np s i.a i - ...... .

SE-M ar-d/or the nk'.m cA-er c:f disatinct i .pp,:3: - ; g t -, L ,.J.

!::EM 1 - i ai NE II MU*NES zon t -j. inc n t be p r ovid, dEd . r L .
• : J9-'2 ZF SJ_).jEL' 7 (idT)TF 107".,:9 "-'.'.". .'

I 1 C". rtIjUT "Entier rL.Tibe-r of ,oLttp9 1 i'.el s " • 'MAs% . ;: IF V:-
107.'40 I FOR -J% 1 0 MU*. -

t2' j FF INT I'Enter '"'. .a.1 .o +c:Dr - ''-', .- cerr-e.:pondi- : t r '- ..etle','l " LI '" nirid" '
1,.:'7 2 FEINT "'coo'h ::,.f !tle'' .ES%: "'-tn .e:. .a..

, " ~ ~ ~ ~ ~ ~ F" KU:"' - - :=:--1 TO N11-2"'. ..:?"H'.FU ! LF..--J .*-'.,'.:
IN Lr L-- (3 ll '*!

.- 9..

gm. -4o"
%°% %



-" "

10 40NE F 7
'L 1. C I1- NEXT K%, ...

! _I". FEM Echo the readout map Just entered
1,:)88 PRINT "Readout map Just entered is as .,llows: , %%
1(900 PRINT "Input "TAB(10) "State"TAB (20) "Output' J4., .

':'- l~920') PRINT ..... TAB (10) ....... TAB (20)
i~ 10 40 FOR L%=1 TO NS%_

1;960 PRINT TA B (2)J%;TAE(12)L; TAB(22'1LF%(J'. L%2'
"(- 109E0 NEXT L%- %

Ic 110(0 REM Ask for modifications, if any
1 1C2h' INPUT "Changes'? (Y) es or (N) o " X$ .'
Iz1-4 I F X$ Y. . " GOT0 11240C)

NJ 1 -,I PRINT "Enter changes in the format, state and OLttpUt.
1108O PRINT "To end, enter state value of 0"
11100 INPUT I%. Y%-

/ 111 0 IF I%.C'= GOTO 10880
t 1114C. IF I%>NS% GOTO 1 1200

16C Ll-% (J , I%) =Y%,
GOTO 1 .1 C00 C"

11 ° ,- n  PRINT "State value must not e.'.ceed'.7.
GOTO 1110)

. 24C) NEXT J%; . ..

112 6 RETURN
Il 3'' EM

I 12".) REM - -"
11 2 R FEM *:**:::t:':* WRITE LF * :*':
t1"'292 REM
" !)Q REM This subroutine is used to save a Logic Funct. on aenerator -;. e
1. C: REM
I [ z i  IF DRI VE$="B" THEN F ILE$= "B: "+L.J--X ELSE FI, L:-t. I iL j

1. .0 IF DRIVE$="D" 'IHEN FILE$ "B: "'-LF , %

11:7:,1 OPEN FILE$ A-L :1. LEN=2

114 C FIELD V$ A SE $

S!I:.: PUT #1, 1
il I-, LSEr V$ = V MlI$ (MU%)

.PUT #1,2
1 '1. LSET V$ = MKIs (YMAX%)
1 14q95 PUT #1,3 ""

1 . 5,. FOR I2% = 1 T 0 M U.
t' 1I5 J3% = . I f ' ' + 4

11~ 56C)
S115H0 FOR 2% =J- TO J1%

L -'± LET MF$ 1 $ L F' 122 D~.

,PUT #1.
LVV' 7 + 1

L :LO NEXT 12%. '-

L .CLOSE #1
RE1 EUk REUR

• 7! -,2 F:EM

I 1750 RE M 
, . .

V V .• -



%'y .0. pk'

p1-7d !( REM11 Th-is SUbroutine ia usd t, reari a Logicr Fu nt i 'n qclnr 1,-tor wr h 4
Z11-7 8 0 REM has been saved in a file.

1 1800C REM 
"120IF DRIV,.E$="E THEN FILE--t="'3: +LFYX$ ELS3E FILEi-LF.:>7-6.%

1184C) IF DRIVE$"b" THEN F ILE$=- B: +LFi.$
19 186C)' OPEN FILEI ti- 1* 1 LEN=2 1

I I 9sk' FIELD #1.2 PS ')$

I 19 2 SAVEDNS% = CVI (V$)%
1 4 0 GET #1.2 r

6 C)SAVEDMU% = CVI (V$)
I 11 f80 IF' S(A.*EDNS% / '.:NcEY. GOTO 12280C

1 2)()C)C IF SAVEDr1'/ :MLJi. GOTO ! A"D
12!:,10 GET #1, vI1A',=CY.1I (VV)

'1F F T27 1 T 0M UY
1 'J4-7%'/ ( 1 1'*NS~i 4

210FOR J 27 J 72 T J1%

1, GET #:1 i 27
t '4 C L FY %12' 1-:ED C VI(Y4

1 1d NEXT1, .71.

I NEXT I2%

CLOSE #1.
RETURN

1IF S0VEDMU%,: MU- Q-OTO 1280W

-1IF SAI)EDNS%-: N87. GOT, 12
1 F'IN T D imne nsions of saved LF e' ceed those c+ c:urren.VI

lbFE-I N T "Samulaion W~ill Use correspond,.rnq poyrtic.r coni.A5 L

~ GOTO 1 2r122N
1 FR I NT "Di mensi on of saved LF 1-- le-n than that. -4
I 24f)(' PR1 NTl "New LF may have to be enter-ed."

1 PF41i FIN T "4st ates i n LF -- ii
1 I P..C FRI NT ''4input_ I ~&1_In LF ~' KV1''

.124C 0"/ = 1
12 4'. --Df CLOSE 4:1

r 1 '.~ r FET' P-N
S f2"? :nis= 1- the end of the proqjr.Lm

1. N' d



..00 REM RSMOVR. BA1 MODULE 
R EM If tk***~:**** f*:* --Y* t~~~.~ '

REMN0
IC, QC, C REM The simulation is event driven, tie events- be1ng cna,:- 'r.. .4.'Z

REM in the input, but NOT the state. The si mul.-aktlon Will-

'4i, REM continue to run tuntil either no more such ch.na- o'ccur
1060 REM (as indicated by the particular DFS sigr-al and input siqn.l

w,' 080 REM involved) or until a user-specified ma' :rnum number of, .nt. ,-' '
i ...... REM have occurred. We prompt thuhis mm nu"

en12 REM and store it in vari able E..-:E-TS,
)0140 REM
'I16- REM It is thus true that EVENTS" :iXY%.

~iT 17:,REM .*
10171 R E 11 *:*: ** * ENTER MAXIMUM EVENTS ** *.:

C. 1 -- REM
1 -REM

10 o 0 ,-. CULS : F'R II'IT
" ?":"- P F'I NT " M ax.'imi T, # o + sste e n in se~t eiT n: ... n!. ,;.":"

,2 L FRi NT

IF EVENTS 1 GOTO 103 2 ,.'

IF EVETSZ <=% MAXY% GOT'D 1.. 6 C)
S() PRINT "Number of events is out of r+an e. & iF'

!3 4C GOTO 10220 J
(C60 REM

Y_ 0 ) REM ...

1:'1 REM :*,*.: : ENTER FROCESSING TIME ::: : :
Z, -17 2 PR E r I: : : "

. REM For realizable (physical) SA1Ms there i. T- .:I;TIL ' rT Hi 1. F-.- .
1, )40C [)EM rate for- events which can be process-;d b% t S.- LA-

4C, REM from the finite (nonzero) time it takes to proc ... aF ne,.

'-I, REM We call this time TFROC and prompt for 1.t. ThL d et aUt :eA
.ic:46.-' REM is (f, meani rg that the SAM is not realizable in practice. ..-....

10490 REM
FR ' NT : FRINT

j,052C, PRINT "A realizable (physical) SA M tae.::es a fini t
1C5A.0 FRINT "length of time to proces-s an event. Enter this ti me:,:"

P5 RINT "-he defaultL value 1- 0. - a:..uMed i-f L:F'. i r " ,"--"".'

*• .'. INPUT "Processing time? " TF'ROCP -o'i REM.-...: ,

R, 0 REM R n. .n lati on -
0, 1 R EM ,.'- .'

6 FR I 11T 1__."_

1 ',_- ''',::
,  FRINT Read v to run siinul ati or-,. ,r t..c,, i n j . -.t :: .. I , . ' , .

PR HT ".whi ch ru-t be an , r.:'<er beteen 1 c' w u 7 '1'

1 7 40 IF X':"'4 < 1 GO"O 11)780
'CC75 I X .% . NS"% GOT I OE'2.
,:pr FRINT "Initial state is out of r-anqe. r k:. -

F'EM Initi al im- s- in ranqe , r s, u , :-:n u.-,.%
C' 3OSiU 1 i ' : ' c::.]. %L. ' ' F Fl . ' -

. .Ei Comp.act o tpltt i:rr -

;.% . .1: 
.:..':.

-~• ? 
". ,%?



M...- -w 1 -16 -W RyW1 i

10920 PRINT "IND% = "'IND'!

1P)96of REM P1 Print oL(tpLt and other arrays
tme'P FPRINT "Index "T(AB (8) "Output value"TAB 24) "Start

In ut TB 47) "State" "-A,,,-
0'uQ PR INT T T 8 r------ - - B . (iZ . - ThI s E)' .

,E 4 -

1I02,:) FOR J'. I TO IND%
P RINT TAB ;') 7

T' ".a% TAB(' YT1 "% TAE . ,,- ,. U Ec " -B 1 RES %

11U NEXT J%
PRI NT

-1 (, C F RINT "Results from this run ma. be saved in a file cr; =-."

11! 2 PRINT "If results are to be saved, enter a {ila' nams in t1e'
P 11140 FRINT "fc rm :' RESx x where x are numeric: char Dt. : H

":l15, PRINT "I+ results are NOT to be saved en-tr CR ,t the prompt. "
1. 10f INPUT "File n-ame -r sa-inr results. "REXX

t120C IF RES<XX$="" GBOTO 11240,
I 22' (GOSUB 1=C)
12.4' GOTO 5

! : 2,--,t-' R E M ' '1 ." .p R M' ". *

1 R EM *** **** RUN SIMULiTION ***:****,**A1(;1
1 17 R EM

R EM ***SUBROUTINE RUNSIM**4*
41: REM This subroutine performs the actual simulation on the model

1132 REM entered in the foregoing part of the program. The simulation
.I 17 4 REM consists of determining the output aL every instant as well as

.136,': REM the corresponding state and input. Since the model assumes that
REM changes in the output can only occur when there is a chanqe

1 .4 f, REM either in the input or in the state, the simul atioF, isa e'venft
142 C) REM driven.
,"4 10 REM

1146,: REM Set the time corresponding to an infinite dela.
,.1430 REM Also set EF'SI, a small positi-ve quantity, for LU.E.f :in.

.. 1 2,0C) REM determi ni nq when TU and TX are about eaual,, .

11J2" REM CD% is a code used to determine whether an orou.t er -.I

.4540 REM occ''urred during processi ng, throughout the simla.tioun.
I 56C, TINF = 3200c' EPSI = . 000f, '. CEi. 0

' 0 R El Initialize inoices
11 . '-'' .[NDEX%=1: I X%=I: IU;.=I 1 .'

-' r ,  FEI [nitiA.]. ize input ard DFG,
I L, 4 U I% = U V% < I U%)

i 16. ,) L/ = X C

R I0 REM Initialize state" ."', X,.1J,=DFEY%(c 1 U1 %, L% "

-7?0 Ri1 Fi rst output piece .
1,;4 Y] : 1 =0 iV~ ,: .-) LF",/ f , L17 , J% :€

1;"60 6UE S% 3 1 U I R E''' 1
179() FEN, SI"--t i-op

I .E1 Get time tr n e:-t t r ar + nr or inpu.t tP no d " .: 11 ' -

-. 1 ' 4, [ F N'MFU -'.- I-HE .I TU= TI .F ELSE -U LI' ,2"
! le6,, II:: k:/MA~ '4 .L' V ., I .L_.i .2 T'I EI'. I- <= ].!iF EL*EL. L,!: ":-1 ' "" "

.-- - - -- P ....... . . .e.....



FTN.V- C-• ,"r 7. 7..77

11900 REM Test for OCcUrence of an even': durinq procesirqg t,.
.1920 FEM Note that we test only f or occurence of an i np..,.t cr,,:e .,je

194( REM sin ce a st at2 chanqe is not considered a mr, al..-tb 1e .. . 1- .

11960 O% = 0 'rlear test bit.
I19e C IF TU >= TPROC GO1-O 122 '2' -n'.
._f ( D% = 1 CD% 1 ' ent d1ur r-_,g Pr-cr= - -o_. s Q

120.]!2,0 REM Current input does not persist tnrcu,,oho_.t pre=.-.::-_i n,.
24 REM Get nex t i nput pI e.Le. _WW.

10% 10%+ 1
IF IU% 1= NUMPU% THEN TU = TINF ".

ELSE TU = TU + UT.IU%+1) - UT(IU%)
'.', 4.0 IF IU% > NUMFU% THEN IU% = NUMPU%

j D11 REM Check to see if durati on oofe. pie ( . pi. _ wa J . . l. o --

12 14C REM current piece is U p to TPR.'OC.-
-"2160 IF TU :. TPROC GOTO 120-,4(0..
•3 C) REM TU i s now 1 arge enough. Decrement i nput pi ece pi-n-r .Th i. s

REM wil1 be incremented in the part o-' the prcogzm wi, hG-ndi.-.
4-... REM the case where the ne>t event is an input change.

(2240 IU% = IU%- 1
.. 6GOTO 1276C

120 F-N Check for smaller of TU and T.-
I0 IF ABS STUL--TX) EF'SI GOTO 1 220 C-

j- IF TU < TX GOTO 1276)
2-4, REM Ne,.:t event is a change in the state. Get new state.
2.- 60 XJ%-=DF'GV%(IX%, UI%. XL%0)

.- , REM Ge'c otutput vallue and start time.
1 240. YV% ( INDEX%) =LF% (UI%, XJ%)

0 lYT (INDEX*') =-FX+YT (INDEX, .-1 )
2 44C IF O%=1 THEN YT(INDEX%)=YT(INDEXY%-I:,+TPFOC..-_

-1 46 URES1 (INDEX') =I%': XRESX INDE>X%) =XJX-
12480 REM Increment output piece pointer.

P-12"50.,)) INDEX%=INDEX%+1 IF INDEX%<=EVENTS "/ GOTO 125Zd0.'.v
" '252: INDEX% = INDEX% -I : RETURI-

1 254 0 REM Adjust TU.
'-5 60 IF TU<.>. TINF THEN TU=TU1-T.X

*p 2b30 REM Read new TX"
12 00 IF Q,' - 0 GOTO 12660
'' , 0 I F T TINF THEN TX = TX - TPROC

* F'.(K:'. GOTO 11 9 .00
2 -b6 J I X,/%= I X "/. 1F

12, ( I F ' /% =KXMAXX U I., :L . I G Cl"O i : 2 .
I X". IX - 1: Ty FINF: i3OlO 1 1.

• . 7:7 --',-t T = F G T (I X %i , U I "/,X L %)-DFGT(! %-1. ;,..L .-
1 74: GOTO 1190.

- L.7 ) F'EM Ne'' t e r t i s an input Ch ang,q,. t_ new-?- inpul: -,.nd i-l; ,-.

78r30 I 1 '" ". + 1
12 8 '0 U ". I I U,1)

, dA-.9 R,,-NM Get new state
I X'=I : XJT='.rDFGV' I *., XL"! r -

, '" O P F.[: M Get O~tzl U t- " ,

A- Y -'I DE A' = 'T U+ YT' F 1' D E I
12' LF Ut I IH EN -- (T INDE Xi =YT1 ' DE .- -E ,-IF,, 1 ' I.."-.

. . .*° - o

• " ." o" "' ,- ," '""" -"-" " "-"-' - " " %; " 
'

' '" " ""." " """" " '" '" '' " -" " " " "-"", -""- -" ."%'--"'" ."-- '-" .J



12 9 6 C-)UR E S I IN D E U I X R E S (1", ND E A
9oINDEX*/=lr4DEX%+1 S

IF' INDEX%< =EVENTS/ GOTI] 17cb4
1 0 INDEX% =INEEX* 1: RETUR*,lN

1~4C RE :1 Incremenrt state pci nter.
117C6 IX%=IX%±l

I uuI F I X/. X M AX/ UI XL',) G 0T 0 14C)

. 1 0 - 130T0 ii.Cb
40) T X DF GT ('2 UI17' X L"/

1 16 C- REM Get new TU
-~ 1 b I F (I LI%+ 1 ;UU THEN TU=T I F ELS.E F=T( % 1 ' IHEi.

j C) GcJTO 1190"0-
1~0 RE M TLH4"X.

* ~-I-IF 'T "::TINF GOTO 1'-7760

26 C) INDEX% =INDEX", -1l RETURN

1 ~ R.REM

~~ 1 REM , *: Si-OlE SIMULAvrIUN REELLTS ~**t4

1 REM

...... I F DRIY-E*="f?" THEN FILE$='l? B" +REES'X E:..-S t F I L E4":: 17: .L
1~0IF DRVEi="b 'THEN FILE-=B E-'"RE:3" -r

x:!- -) ClOPEN FlILES AS #1 LEN=].-
FIELD #1, '2 AS Yl*S. 2 AS U$. 22AS XS 4 OS 1-

4 -,1 C) RE. Save speciftic o-f the ruin
,a LC- LSET US$ RIGHT$(INPUTXX$,2)

L*~ S0 LE X s I - RI T $( D F G $

LSET Y$ = RIGHTS (LFXXS
1 0 LSET Ts = M:' IS (IAD%)

-5,4 0 FPRINT Y$ .U$ .X$.-TS
PUT #1. 1

1 3580' LSET Y ~. S(M-X%
-,LSET US IV<P.iSMU.)

~ ~ )LSET X$ =Ml:I$(Nc5%)

1. ~4 C) LSET T$ = MK::I$ (X(--)

I '0PU T #1.2

7 C) 0 I.SET 15$ M NK:S I TP R 0C

PUT #1 I
4U FOR .3% 4.0T IHfi",'±T-

1L'8 LET U $ M'l K (URE *:"X (3-
LSET X$ 11 KI I,: 1- PXRE; S 3 J-.>

LSE- 'I M F.

1 C) PUTA -IJi P__ :y.
6 NEXT J%

.;~. c~CLOPU #1 3

"4 ~ FUN %% N

F *d'M



90C:'0 REM FLTLVR. BAS MODULE

W01l REM Ar -4.~*** f -f*~Y -V.*

REM
1 1) CLS : LOCAFE 2,1. FRINT "F L 0 T M E N U -

' 1_.(Y2C.. LOCAiTE 9!251 PRINT "I -- Plot input -funct.ion" : :.
C,4 LOCATE 1 25 PRI NT -2 Plot state funct i. on .. '

1_0 I.ATE 13 2_1 5 PRINT " - Plot output tunction"
t)(8C LOiCATE 15,25 PRINT "4 -- Plot DFGs"

I ''10 LOCArE 1L7,25 P RINT "5 -- Load results trom +ile to plot'
12 L OA TE 19,25 PRINT "6 -- Ex.it to main menu."

I0140 LOCATE 32 PRINT SPC (40)
16 1-6 LOCATE 23,"2C0 INlF'LIT "Enter selection by number " : SUBSELX"-.
Is-:;C ON SUBSEL% GOTO 1044z0., 10600* 1 .0(, 10780,* 1022,:; 5,:'00 __--_-

12 OUND 2'20. GOTO 10140
.10220 CLS : INPUT "Enter results tile name ";RESXX$

2.' 4' G,)SUB 176:80 : GOTO 10000
REM .-

J,2 80 CLS 'clear screen
REM

C,291 REM *** *:.**.** PLOT OUTPUT ,**'u** -

1022 REM
,' REM Output is -to be saved.

0. - I FOR L,' = I TO IND% -.-'-"
1,4 FPLT% (L%) = Y%(L.%)
.03 60) NEXT LX "

NAM% = 1
1040( LEVELS% = YMAX%

S G0T0 1084C 4 0

-r 4-1 REM *4 *-*** t PLOT I N PLJ T t*~~~4
1 .4., REM
.- 0440 REM Input is to be saved.
,'046 0 FOR L'X = 1 TO ND',""
10480 FPLT : (L%) = URES" (L
."05" ") NEXT L%

% C) 5 -20C-) NAM% = 2-
I C-)31)4 LEVELS"" = ML%-/X

'5o' CODE% = CD% A

1059 1 F:EM :* Y. :4 : ::: : : :4:# F'.OT S1YA E :*': .... :: ::: :, :# , :.,. : *v%* %
of' 'I - N.

'EN SLRte is: to L aEt .ii-
FOR I-_ I TO Y';

-- ',0640~~~ FBL.T%" , L' ... XH.ES% :; /'.'
' ''5.5' NJE X" I___'" "

e 76':, G O LI

:07 70 F" L M -.-.- :

1'':"; SqEl :,: ': k *:k:i:: PLOT rFGS L" 4 t  : i ':v.',
2, R- . .. M w.

10800~ ~~ I(SIUJH t z.!30" .. ,.'

I" I.-.'

4,,
,"' - -. , - *, ' -J. . . . . . . . . . ....".. -" -. •"- • • • .S " """ " " ", "* .. " "Na'-. .% " -' " . W"4 ,"A", " "-"""'", " C """. .t.".". .* 5 ~ % ' " " • ?. ? *. * , "- . - . .



* -_% _d a.

10 82C SC E-EN COIO 1 0CA et :-reen "::: , T :.
E- M Save t mE a rr v an rd s,pi::. f I c -l ,:I-.e ..- ..

8 6L0 SPF$ INF'UTX\'$ +
83& SF21 = F 'X"$ + .. . - J

.:,-,Gr,~ ~~ F XP3 = F:':t - In it t a t "i""

SF'ECS $ : 1 SF2 *+ SP"
fc!,z! .V FOR L% 1 TO t

TIMEPLT (L,) YT .
NEXT Le

1 r M ' .: f- f*f .:: PLOT FEUES fED FUN IIf i . . :-:.: ": I I. .-'
--! ~r '' REM "'' :

REM Funct.ons -. ed a- : bT-- p1ottod
I 10Q80 FIR 1 NiT-0 _.

: Ii4F jREM For each function tc j;De pi. to.,, t if : , ... ... ,.
:116(:) FREMi ar ray "'" '." "

J. - FOF : KL% 1 T I, . .C) -1,-D

1 ', VALL% (l-tt __*z.' ) .... I-FPLLTF -: L )- .

T0IM ( L T IMEPL'T (KL%) *'- -'

1 NEXT [L% -l

".":L3 C,~ N% T 1= 1 ..E' r:L.% '"'-

1:1.4::": STAiR7" z- CODE% .7-.,'-

TF = TPROC -

9'1440 FLS$ = SI:E: C
11.-4 6-:, GOSUB 11b

1 7f)SCREEN C) L.. n ~v I tk 2 t. In,~ '. X
" ' GOTO 1i 0(C C.)

SEND -16 20 F. E M tj: 
'

--
1. 6 RE r- I
1. 6-1 REM ::. 4 *t 4 IV : : PLOTTER FUNCTION - ::**V: '4. *"

I .L 2 RE M
I I. -' REM 4. 4*.* SUBROLUT I Ni*E F'LLO' TEF *A,

RE:LM .RE M
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A novel collection of nonlinear discrete-time systems is analyzed and characterized up to

isomorphism. The systems in question are autonomous and deterministic and have the half- Z '

open unit interval [0. I) as state space. The analysis establishes isomorphisms between these - ,-

systems and the members of an especially simple, easy-to-understand, normal-form subclass of

"prototype" systems. The prototypes consist exclusively of piecewise-linear systems with -.

parallel pieces. The theory hinges upon a generally unfamiliar but remarkable real number

representation resembling ordinary binary or decimal notation but involving a radix or base

which is not an integer. 1985 Academic Press. Inc

I. INTRODUCTION

The systems to be considered here are discrete-time systems having as state space
the half-open unit interval [0, 1) of the real line, and are autonomous, time-
invariant, and deterministic, as well. Thus they are characterized by a difference
equation of the form X, I = f(x,), k = 0, 1. 2. where f is a function mapping
[0, 1 ) to [0, 1 ). We further require f to have the general form shown in Fig. I (and
described precisely in Section II below). .

When started at time zero in an initial state xo such systems will naturally
proceed through an infinite sequence of states x., XI =f(xo), x2 =f(xI ) and so on
(Fig. 2). This sequence constitutes the "orbit" of the system arising from initial state % "

x,. This paper will investigate how qualititative aspects of the orbit change, first as
x0 is varied through [0, 1 ) and second, as f itself is changed (but still of the form of ..

Fig. 1).'
By focussing attention on a subset of these systems-the "signature-distinct" ones

(see Sect. Il--we shall develop an isomorphic relationship between these systems
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(AFSC), Contract F49620-82C-0080.
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0 b I

FiG. 1. A lypical saw function. I ,l., 6'

and piecewise-linear systems. This isomorphic relationship will essentially reduce
the study of nonlinear signature-distinct systems to the study of piecewise-linear .: ..J
prototypes with parallel pieces-a great simplification, since the latter are much
more manageable, both computationally and conceptually. - %

Three diverse considerations motivate the approach of the present paper. The ". -
first is strictly pragmatic: extending prior research by the authors in this area for
similar systems having continuous transition functions [3. 4, 5]. Our orbit space
here is much more intuitively structured and ordered and the net result is a detailed
structure theory for these systems-an achievement which we believe will lead the
way to similar results for more extensive classes of systems (see Section VI). The W,
second motivation involves demonstration that the analytic techniques of our
earlier papers are not restricted to continuous transition functions and as such are
applicable to systems possessing two distinct modes of behavior as in Fig. I. The
third motivation is purely mathematical: an old problem of Ulam [13] asks :,',
whether any continuous transformation of (0, 1) is conjugate to a piecewise-linear
transformation of same. The results presented here represent additional progress on
this basic mathematical question. .,' ,

X? ------ ---- Y

b

0 X0 X3  X1 b X2  I %

FiG. 2. The orbit arising from a point x..

W,

.60
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.t- i i ~- _ .~ '* ,."___ Vw j'

?%.. X0 X3 X __2 __ 7.'''.
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Prior research in this area has employed the tools of ergodic theory [I I] or has .

V1  rrestricted itself to the study of fixed points of the iterates of functions [9, 6]. Our
approach here is deliberately fundamental, concentrating on the isomorphism

question and using only the most elementary tools of mathematical analysis. The
authors are currently endeavoring to reconcile the more esoteric methods of system
analysis with the approach presented here. The interested reader should consult the

monograph of Collet and Eckmann [ 1 ] for a good overview of current work in this %

dynamic field, as well as the now "classic" papers of Li and Yorke [7] and May[8]. ..... ,

11. SAW FUNCTIONS, SIGNATURES, AND FUNDAMENTAL RESULTS

We propose to investigate the behavior of l-dimensional autonomous discrete-
time systems possessing saw functions for their transition maps. These functions .

have the sawtooth form illustrated in Fig. 1 and are formally defined as follows:

DEFINITION 1. A function f: [0, 1) - [0, 1) is a saw function iff there exists a '.

point b in (0, 1) such that the following three conditions hold:

(a) f is continuous and strictly monotone increasing on each of the intervals
[0, b) and [b, 1),

(b) f(O)f=f0 and f(b)=0, -
(c) the limit off(x) as x approaches b from the left is I and the limit off(x)

as x approaches I from the left is some quantity c in (0, 1].

Note that NO assumption of differentiability, linearity, or convexity is placed "
upon any part of f The point b will be called the "breakpoint" of f "

DENImTION 2. Two saw functions f and g are said to be isomorphic iff there -.--

exists a (necessarily strictly monotone increasing) homeomorphism
h: [0, 1) -- [0, 1) such that f= hgh -', where h denotes the inverse of h. ,.-..

The isomorphism of two saw functions f and g immediately implies that the ,
autonomous discrete-time systems they define are essentially the same as regards
iterative, order-theoretic, and topological properties. The following further -

definitions are fundamental in pursuing this line of thought.

DEFINITION 3. Given an arbitrary function f denote by f*, k = 1, 2, 3,..., the
k-fold composition f4 (x) f(f( ... f(x)... )). Take f°(x) = x. The function f will.
be called the kth-iterate off

DEFINITION 4. Let f be an arbitrary saw function and let x be a point in [0, 1).
Define the orbit of x under f, denoted by orbAx), to be the infinite sequence of real
numbers x0xj..., where X, =fk(x), for k =0, 1. Define the signature of x under f, -"

I.

..4..;'

- 5l, -.

":'.~
a".""""'.-2, # . """""% . .r"""•" . - . o", . ". "'""""- ".-,- . . . ."-''-"
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denoted by sig/x), to be the infinite binary sequence sos....,where sk = 0 if x, is in
[0, b) and s=, = I if x, is in [b, 1). . .t.'-a

Thus sig/{x) is a simple 2-level quantization of orbflx) which serves to indicate to
which of the two subintervals [0, b) or [b, I ) each Xk belongs. The analysis below
will demonstrate that signatures are more useful in understanding the orbital
behavior of f than are the orbits themselves, the superabundance of exact quan-
titative information in orbits obscures the intrinsic, coordinate-system-independent .

* '. structural information which signatures expose! " -'
The following theorem, although fundamental, is straightforward and its proof is _______

omitted.

THEOREM I. Let h: [0, 1) -- [0, 1) be a homeomorphism and f a saw function
with breakpoint b. If g is the function defined by g = hfh-' then g is also a saw
function, with breakpoint h(b) and, for all x in [0, 1 ), sig.x) = sig,(h(x)).

DEFINITION 5. For any saw function f define the orbit repertoire of f, denoted .0 -_.

as ORf, as the set (orbf(x) I x is in [0, 1 )}and define the signature repertoire of f,
SR,, as {sigf(x) I x is in [0, 1 )}.

COROLLARY. If g = hfh- ',as in Theorem 1, then SRf = SR.

Note. If g = hfh -' as in Theorem I it is manifest that for corresponding points x
and h(x), orb1 (x) can differ arbitrarily from orbR(h(x)), whereas the signatures have .
been shown to be identical. This illustrates our earlier remark about the invariance "-'- -,
of signatures under a "change of coordinates." - J

DEFINITON 6. Let S denote the set of all infinite binary sequences so s '
Consider S to be ordered lexicographically and let "<" denote this ordering. That
is, s = so s, s2 ... < t = to t t, ... if they are not identical and if. setting k to be the first
position in which they differ, s, = 0 and t , = 1. Use < to define intervals (s. t),
[s, t), (s, t], and [s, t] in the usual fashion. Consider all possible open intervals .. €'**
(s. t), together with the "semi-infinite" intervals [ t I t < s } and ft I t > s } as defining
a topology TOP on S. -af .

The reader's familiarity with the following mathematical properties of S, <, and ___._

TOP is assumed:

(a) S is uncountable
.'. (b) < really is an order relation

(c) < is a total order on S
(d) S contains a least element, 000..., and a greatest element, I ll...
(e) given any subset T of S, there exists a unique element of S serving as

sup(T) (provided of course that T is non-empty)
(f) similarly inf(T) always exists, if T is non-empty

b'JM

%-a
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(g) the topology TOP is a standard one on totally ordered sets known as the -- "
order topology"

(h) in TOP a sequence s' of elements of S converges to s in S iff for each k
the sequence of kth terms of the s' becomes eventually constant, with value equal to
the kth term of s

(i) S is not homeomorphic to [0, 1] owing to the presence of gaps in the -

order: there are no elements of S between each pair of elements of the forms 0 s,
sk s0 n 1 .... and so s ... sk 0 0 0.

Since signatures are infinite binary sequences themselves we will consider them as
elements of S. The significance of the < order thus placed on signatures will be
explained by the next theorem; the significance of the topology will become evident
in Section III.

DEF INMON 7. For s in S, s = s S2..., define for k > I the sequence lopk(s) to
be the sequence sk sk+ .... obtained by lopping off and throwing away the first k .

terms of s. Define lop(s) to be lop'(s). Define lop°(s) to be s.

The following obvious property will be referred to as the "mapping property" for
signatures and will be useful throughout the sequel:

sig/(fk(x)) = lop(sigf(x)) for all k > 0

DEFrNmToN 8. Given an arbitrary saw function f with breakpoint b define fo as
the function obtained by restricting f to [0, b) and define f, as the function .. -:

obtained by restricting f to [b, 1). Note that fo and f, are both strictly monotone
increasing on their respective domains.

THEOREM 2 (Monotonicity of signatures property). Let a fixed saw function f
be given. For arbitrary points x and y in [0, 1), x < y, it is always the case that ...sig,4 x) < sigJ4 y). -''

Proof. Recall the above definition of f, and f1, Given an arbitrary point : in :
[0, 1) with orbf z)=:oza :2..., and sigAZ)=Wo w, w2..., we have the general for-
mula ' " "

Z = f k(z) = f ,,_ ,Ifw _ ... f ,(: ), " "

since the signature of z tells us which "partial" function fo or f1 to use in calculating
--,+, from z,, for i=, 1.

Now consider the given points x and y. If sigf~x) = sig v) we are done. If the
signatures differ set sigfdx) = SO s .... sigf(y) = to t1 .... and let k be the least index . .. .-
for which they differ. If k > I then apply the above formula to conclude that .,. ,.

f k(y) =f",_ ... f, f,(y)

) . . .

-f~k-..,:-'.l:-)
IAP.
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by the definition of k. The functional composition common to the right-hand sides . .

of these expressions is a strictly monotone increasing function, being the com- .0
position of such, so x < y implies f*(x) <fk(y). Note that this is true even if k -0. ,..V
Hence in all cases the statement "sk not equal to t," can be valid only if s, <It,. .
Thus sig(x) < sig4y) by the definition of the < order on signatures.

Hence in all cases we have sig-(x) < sigf(y). Q.E.D. ..

The monotonicity of signatures property shows that the order in which a sawI'..
function assumes its signatures is pre-determined. This simple regularity will be , ,.,
exploited throughout the remainder of the paper. The remainder of this section dis-
cusses a number of corollaries to Theorem 2. Most of the proofs are straightforward
and will be omitted for lack of space.

MoNoToNcrrY COROLLARY I. Given a saw function f the following are all
equivalent formulations of the Monotonicity of Signatures Principle:

(a) sigf: [0, 1] -. S is a (generally non-strictly) monotone increasing map

(b) ifsig/(x)>sigA y) then x> y
(c) it is impossible to have x < y and sigf4x) > sig (y) simultaneously.

It is important to understand that one cannot in general strengthen the statement
of Theorem 2 to read "x < v implies sigf(x) < sigfly)." The following discussion will .4e
address this latter point.

DmrnoN 9. A saw function f is said to signature-distinct if and only if for all
x and y in [0, 1), x not equal to y implies sig,4x) not equal to sigf(y). -

Figure 3 establishes the existence of saw functions that are not signature-distinct: ..
the shaded x-axis interval sits entirely to the left of the breakpoint b and maps into
itself under the action of the saw function shown. Hence all points of the shaded
interval have signature 000 .... ", "t...j

/C,..,... .-YMbe

I C, ,. % • _ be

b I

N % A s f

, .. ... .. ,.... ... .- F..... 3. A., ,saw function ..... ,wh...h..is..no.....i.....tu.....ist.in.-c.'-.'
-r - a ¢%- '% ... e. ~e¢: t' - €_2 ','_#21'. "3€__,.'_''_# ._ " " "" " " """ " "" " """""'-""*"" -t ., .,
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DmNmON 10. For any saw function f and any sequence s in S, define pf(s) to
be the set of points x in [0, 1 ) for which sigj(x) = s.

MONOTONICITY COROLLARY 2. For anv, saw function f and any s in S, pr(s) is , %
either empty, a single point or an interval.'

In the next corollary we do indeed establish the existence of a wide class of
signature-distinct saw functions: .-

DFTNmoN 11. Let f be a given saw function, fo, f1 as in Definition 8. Define

F0 on domain [0, b] by setting Fo(b)= 1; Fo(x)=fo(x) for x in [0, b). Similarly
define F, on domain [b, 1] by defining F,(l)=c, F,(x)=f,(x) for x in [b, 1). We
say f is piecewise strictly expansive (pse) if and only if F0 and F, are strictly expan-
sive in their actions, i.e., for arbitrary x and J in the domain of F0, IFo(x)- V.- "-
Fo(y)l > Ix- yI and similarly for F,

ilb MONOTONICITY COROLLARY 3. If a saw function is pse it is signature-distinct.

Proof by contradiction. Assume that s = ss, s, ... is a signature under f for
which pr~s) is an interval of positive length. Observe that for all i > 0 by the map-
ping property for signatures, F,,(p41.op'(s))) is a subset of pAlop' l(s)). By the
expansive nature of F, and F, then we conclude that 0 < length p.s) <
length pflop(s)) < length pflop2(s)) <....

Two subcases arise: if all the signatures Iop'(s) are different from each other, and
from s, then all of the intervals in the inequality chain above are disjoint, so that .

the sum of all of their lengths must be at most I. Yet the sequence of lengths is
increasing-contradiction. So it must be that lop'(s) lop-(s) for some i and j. In
this situation we would have equality of lengths, contradicting the inequality of
lengths noted above.

The only conclusion: pf{s) is never an interval of positive length, i.e., each -

signature produced by f arises at but one point. Q.E.D. -.

The following corollary is a partial converse to the corollary to Theorem 1; it is
given without proof. , -I.

MoNoToNicrry COROLLARY 4. Suppose that f and g are saw functions with
SRf = SR, and suppose that g is signature-distinct. The function h: [0, 1) -0 [0, 1)
defined by h(x)= the unique y in [0, 1) for which sig,(y) -sigfx) has the following '.,',

properties:

(a) h(0)=0, h(breakpoint of f)= breakpoint of g'. " "

(b) h is monotone increasing

(c) h is onto [0, 1)

(d) h is continuous

• ~~. d',d'.
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(e) h is a homeomorphism iff f is signature-distinct

(f) hf = gh; if f is signature-distinct, g = hfh-.

This naturally leads to:

TmEOREM 3. Let f and g be signature-distinct saws. We have SRf= SR, iff f and

g are isomorphic. %._

Proof By the corollary to Theorem I and Monotonicity Corollary 4. Q.E.D.

In summary the simple concept of signature repertoire contains enough infor-

mation to determine the isomorphism class of signature-distinct saw functions in an

instrinsic fashion. Consequently it behooves us to understand more thoroughly the

content and structure of signature repertoires. This is the central topic of the next ,

section.

Ill. EXTENDED SAWS

Motivated by the desire to determine the content and structure of arbitrary saw
functions' signature repertoires we hereby introduce a modified class of transition
mappings (the class of extended saws) for which this determination can be carried -

out with minimal technical difficulty. Once the determination has been made (in
Subsection B below) we shall return to derive analogous results for signature-dis-
tinct ordinary saw functions (in Subsection C). The latter development will lean
heavily on extended saw theory. The authors know no shorter path. -,-

As their definitions will instantly reveal, extended saws are not really functions in
the modern mathematical sense of the word, because they are multiply-defined at -
one point b of their domain [0, 1]. Strictly speaking, extended saws are relations .,.'

between [0, 1] and itself. Unfortunately, the rigorous "relation" terminology .
obscures the more pertinent understanding that extended saws are but another way
of dealing with the discontinuity in the graph of a function. We will sidestep this
terminological issue in what follows by simply using the term "extended saws," as ....

opposed to "extended saw functions" or "saw relations."

Ted A. Elementary Material

The following paragraphs introduce extended saws, oibits, and signatures in a
fashion analogous to the definitions for ordinary saw functions given in the 2 *

previous section. By reason of said analogy many of the straightforward proofs '"
below are omitted for the sake of brevity.

DE HTmON 12. An extended saw F is a multiple-valued mapping from [0, 1] to
(0, 1] having the following properties:

(a) the multiple-valuedness occurs at a single point b in (0, 1), where F(b) is . ,."
both 0 and 1. We shall call b the breakpoint of F.

t .~*,. ,.,*
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FiG. 4. An extended saw.
P~

(b) F restricted to [0, b) is continuous, strictly monotone increasing, and
onto [0, 1). .

(c) F restricted to (b, 1] is continuous, strictly monotone increasing, and
onto (0, c] for some c obeying 0 < c < 1.

Figure 4 shows the graph of a typical extended saw. Clearly given an ordinary
saw function f an extended saw results by annexing the points (b, I) and (I, c) to . .,.
the graph of f and all possible extended saws arise in this fashion. Iff is a saw and
F an extended saw so derived, we call F the extension off and f the underlying saw
of F. Referring to Definition 1I, note that F0 and F, represent the left and right -

halves of F and that each function is strictly monotone increasing on its domain. ,.

DERNTON 13. Let F be an arbitrary extended saw, x in [0, 1]. Define .

XoX, x 2 ... (where x, in [0, 1] for all i), to be an orbit for x under Fiffxo=x and .

xt= F(x,) for all i. Note that if x, = b then x,+, can be either 0 or 1, so some , .
points x have more than one orbit under this definition. Writing orbAx) as the set
of all possible orbits of x, we say x is regular if orbx) is a singleton set; otherwise
we call x irregular.

All irregular points are representable as F-(b) for some nonnegative integer k.
Since F-(b) contains at most 2**k elements, the totality of irregular points for a .. ,a
given F is finite or countably infinite. In fact, as a moment's thought will reveal, it is
countably infinite. 1

DEFNITON 14. Let F, x be as above, and let xox, x,... be an orbit for x. The .
signature of x associated with this orbit is the binary sequence sO s s2 ... , for which
s,=O ifx<b;si= I ifx,>b and if xi=b then s,=O ifx,+1 = l, s,= I ifx,.1 =0.

Defining sig,(x) as the set of signatures of x so associated with the elements of
orb,(x) we note the following relationship with extended saw signatures and
ordinary saw function signatures: Let f be an ordinary saw function and let F be its .&'.
extension. For any x in [0, 1), sigf(x) is an element of sig,4x). If orbf(x) includes b,

,..*, ,"'s" ,,,
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however, then sigdx) contains additional signatures corresponding to the extra
orbit(s) arising from the point b.

THEOREM 4 (Monotonicity of signatures for extended saws). Let F be an
arbitrary extended saw, x and y points in [0. I]. Let so s, s, ... be an element of A

sigpAx), t t2 t... an element of sigAiy). Then x < y implies sos , s, ... < to t t2  ." 1e 2

DEFINmoN 15. The signature repertoire SRF of an extended saw F is the set
Is I s is in sigAx) for some x in [0. 1]}. For any s in S (Definition 6) the set p,4s) " .
is equal to {x Ix in [0, 1] and s is in sigFx)}.

The above definitions are a straightforward generalization of those of the
preceding section. Note that an immediate consequence of Theorem 4 is that. for -

any s, p,4s) is an interval. It is non-empty iff s is in SR.

B. Topological Considerations

The purpose of the above discussion has been to introduce extended saws on an -"'-
equal footing with their ordinary saw counterparts. Recalling that the ultimate pur- 0
pose of this introduction was to expedite analysis of signature repertoire content,
we now proceed to derive a fundamental result: SR,. is completely determined by
sigh I)! The demonstration proceeds in two stages: (a) showing that the initial por-
tions of strings in SR, are determined by sig,41 h and (b) showing that initial-por-
tion repertoires determine SRF via a limiting process. Some uniformity of notation -

is called for:

DEFINITION 16. Let S denote the set of all length k strings of Os and Is; S* thus .
contains 2* members. Given s in S let s[0, k) denote the k-bit string so s, ... s, , ....
k > 0. Similarly define s[O, k] to include s,. Given an extended saw F and a point x
in [0, 1 ], define the k-signatures of x, sig Ax) via sigF(x) - {s[O, k) I s is in sigdx)'.
Let SRF, the k-signature repertoire of F, denote all length k strings which arise in .
this fashion. Thus SR, is a set of strings, analogous to SR , If s is a string of length

or greater, let p4s) denote the set of all x such that s[0, k) is in sig 4x). Note that % %
p4s) is empty iff s[0, k) is not in SRk,. View S as lexicographically ordered by <
as S is.

LEMMA 1. For any extended saw F and any x in [0, 1], sig,4x) is closed as a sub- -
set of S in the topology TOP (Definition 6).

Proof Choose any sequence of signatures s' in sig,-x) which coverges in TOP
to some sequence s in S. If s is not in sigx) then it fails to be a signature for x due
to a fault in its first k terms, for some value of k. By the nature of covergence in
TOP, then, for i sufficiently large, the s' themselves are not signatures of x. Con-
tradiction. So s is in sig,,x). Q.E.D.

By virtue of Lemma 1, we can make the following definitions:

,p
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DEHmNmoN 17. Denote sup(sig,4x)) by rs(x), called the right signature of x, .-

and denote inf(sigAx)) by ls(x), the left signature of x. By Lemma i, rsAx) and -

ls,4x) are in sigAx).
Note that if x is regular, it must be that sig,4x)- {ls,4x)} = {rsAx)}. Further-

more, the above "lopping properties" hold for left and right signatures:

lop(rsAx)) = rsr4F(x)) for x not equal to b, - -

lop(ls,.(x))=ls,(F(x)) for x not equal to b,

lop(rsAb)) = 0000..., "- ,,.

lop(lsAb)) = Is,.( 1).

Note that s and t in S with s <t implies s[O,k)1[O,k). The principle of
monotonicity of k-signatures immediately follows: s in sig 4x) and t in sig 4y) and
x < y implies s < t. It is immediate that if x and v share a k-signature s then every:
between x and y must share this signature and this be the only signature for ..
Hence p 4s) for any s in SR* is an interval. In fact, it is a closed interval, as the
following lemma demonstrates. We omit its straightforward proof which simply
relies upon the closedness of the intervals [0, b] and [b, I].

LEMMA 2. For any s in SRF the point set p As) is a closed subset of [0, 1].

Proof The proof is straightforward and is omitted.

What is the relationship between the p 4s) and ps)?

LEMMA 3. p,4s)= X IX is in p 4s)for all k} for an), s in SRF, i.e., p s) is the
intersection over k of the p As).

Proof From basic definitions it is clear that for any s and for any k, pAs) is a
subset of pls). Conversely, suppose that x is in p 4s) for all values of k, for a given .. ,
s. Then there must exist a sequence of elements of sigx) s, s, s3 . for which -

s'[0, i) agrees with s[0, i) for all i. But this means that in the topology TOP, {s'} -
converges to s. Since sig,4x) is closed (Lemma I it must be the case then that s is
in sigF(x) too, i.e., x is in pus). Q.E.D.

COROLLARY. pu4s) is a closed interval. I':

Note. Any function g defined on points x may be extended to a function g
defined on sets of points X by writing g(X)= {g(x) Ix is in X and x is in the ..
domain of g}. We shall use this convention below in referring to sets Fo(X) and """
F,(X) for various subsets X of [0, 1]. We similarly will talk about sig,(X) and- -

sigUX) for subsets X of [0, 1 ] and to simplify notation will write g[p, q] instead of
g([p, q]) when the sets X in qu .stion are intervals.

The next Lemma shows how (k + 1)-signatures are related to k-signatures; its
proof is straightforward and is omitted.

• .. . "-
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EML A 4, For any subset X of [0, 1 ], and k > I

sig '(K)=OsigFo( X)) u I sig4F, (X)),

where the dots denote string concatenation.

We also omit the proof of

LEMMA 5. Given arbitraryx andy obeying0 < x <,y < 1, for any k >, 1,

sigk[x, y] = SRk A [Isl(x), rs(y)],

where A denotes intersection, and the closed interval shown is an interval in Sk. .,

The Recursion Theorem "

All of the above culminates in what may be regarded as one of the fundamental
results of this paper.

THEOREM 5 (Recursion theorem). Let F be an arbitrary extended saw. Then for
all k >, 0

SR k* = (0. SR*),... (- SR*- A [jok*, 1 (l)]). , ,.

Proof Recalling that F(I)= c we have

SlR + I= sigk + '[0, 1] (by definition)

= 0"sigVFo[0, 1])u ! sig F,[0, 1]) (by Lemma 4)

= 0. sig-f0, ] u. 1 sig 0, c] (by direct calculation)
=.(SR k^ [Is (0), rs l )]) :- ,'_

-u i •(SFk A [ls*^O), rs4c)]) (by Lemma 5).

Since SRk, is a subset of [lsk,0), rs 41 )] we thus have,. .-

SR k' =0 SR U I -(SR*F A [ls 40), rs 4c)])
=(O-S~k~' (." -, S%"A o

--(0.SR -) (I .SR A [I0k. rs-* '(I)])

(by direct calculation). Q.E.D.

We always have, or course, that SR,= {0, 1}; by mathematical induction

employing the recursion of Theorem 5, then, it follows that all finite length

signatures (initial portions of elements of SR F) are determined by rsA 1 ) (and hence -

by sig,,(l)). It will now be demonstrated that SR, itself is determined by sigFrl) ".

(Theorems 6 and 7.)

!%
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D EmtrnON 18. Given any sequence 7* of subsets of S* define Jim 7* to be the
subset T of S such that t is in Tiff t[0, k) is in * for every k.

T H EO R EM 6. S R ,= li S R ,. . . . ,

Proof Clearly SRF is a subset of lim SRI-, for if s is in SR, then for all k, s[O, k) % ,
is in SRk by the definition of SR,. Conversely, suppose that s is in r SRk. Then " -
s[O, k) is in SR' for all k, and thus, for all k, p:4s) is non-empty. By Lemma 3, p,4s) '
is the intersection of p4s), which themselves form a nested sequence of closed inter-

-;V_ vals. B y elem entary analysis, then, p,(s) is non-em pty. H ence, s is in SR F. Q .E .D .% - , • 4 -
Finally, we have the following string-theoretic criterion for membership in SRF, t%

based entirely upon rs,( ):

TIIREm 7. Let F be an arbitrary extended saw. Then

SitS = s Ilop*(s <rs41l)forall k ."

Proof. If s is in SR, then fo ," all k. lopkts) is in SRF. rs,4 ) is the maximal mem - .
ber of SR, by monotonicity of signatures Conversely, we use a method attributable
to Kwankam [6]:

Given s in S with lope(s;I< rsAl ) for all k. we must show that s is in SRF. By
Theorem 6 it suffices to show that s[O, k) is in SR, for all k. We do so by induction
on k. We find it easier to prove by induction a more general result. Letting
s[j,j+k] denote the finite sequence s, s,., s ,, it will be shown by induction
on k that s[j, j + k] is in SR 'for j = 0, L.... That is. we shall establish that all
contiguous length (k + I ) substrings of s are (k + I )-signatures of F, rather than just
concentrating on initial substrings only.

B asis: for k = O , s[j,j + k] is either 0 o r 1. b ut S R ,, {0, I . " "" '
Induction step: Assume that s[i, i+k] is a (k + l)-signature for all i. Considerfor a given j, s[ j, j + k + I]. Applying the recursion theorem we argue as follows: ifs[j,j+k+ 1] arises from s[j+ l,j+k + 1] by prefixing a 0, it is immediate that

'- s[ j, j + k + I] is a (k + 2)-signature. If it arises from s[ j + 1, j +k+ I ] by prefixing
a I then we note that it will be a (k + 2)-signature if it is k rs (1 But this is true
from our theorem hypothesis, since lop-(s) < rs,4 !). Q.E.D.

-' C. The Signature-Distinct Case

The general results of the previous two subsections will be applied here to
produce a detailed theory of signature repertoi- e content for signature-distinct saw
functions. In particular a theorem for determining signature repertoire content . ,
analogous to Theorem 7 will be established. Most of the results on signature-dis-
tinct saw functions f recorded here will be derived from properties of the extension
F of f Accordingly we will cite some results relating the two (F and f) in greater
detail. The proofs are straightforward and are omitted.

- . . ,
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LEMMA 6. Let f be an arbitrary saw and F its extension:

(a) Let xxl x2 ... be an F-orbit. Then x, x, x, ... is an f-orbit iff no x, is equal
to . ,.J _

(b) Let xx, x2 ... be an F-orbit and so  s, ... the corresponding F-signature. if
x x1 x 2 ... is also an f-orbit, then so s, s, ... is also an f-signature (and is the signature
associated with this orbit).

(c) If sos, s2 ... is an f-signature (of the point x, say) then sos, s, ... =rs,4x).
-'. .9.d.

DEFINITION 19. An extended saw F is said to be signature-distinct iff whenever x
is different from y then sig,4x) and sig,.y) are disjoint.

LEMMA 7. Let f be an arbitrary saw function and F its extension. Then f is
signature-distinct iff F is.

THEOREM 8. (Discriminant theorem). Let f be a signature-distinct saw function
and let F be its extension. Then -

SR,-= {s I lop*(s)< lsAl) for all k >0}.

Proof Let T denote the set of strings on the right of the above equation. We

first show that SR, is a subset of T. If s is in SRf then there exists an x in [0. 1
such that s= rs,x), by Lemma 6. We know that f&(x)< I for all k. Hence by .-,,-

monotonicity, Iop"(s) < lsIl,. ) for all k. Since F is signature-distinct (Lemma 7) and " '' .

x< I, it follows that lop(s)<lsA 1) for all k. Hence SR1 is a subset of T. "
Conversely, suppose s is in T. By Theorem 7, s is in SRF. Thus there exists x, in

[0, 1] with orbit XoX,X2.... such that s is an F-signature for x0 arising from this .

orbit. If this orbit contains the term Xk = I then lop"(s) is a signature of I arising
from the F-orbit Xk Xk I Xk, 2 ..-; hence lopk(s) >ls,4 I ), contradicting the definition .- -

of T. Thus the orbit XoXX 2... contains no x, = 1 and so is an f-orbit by Lemma 6.
So again by Lemma 6, s is an f-signature. Q.E.D.

DErn'rNION 20. Let f be an arbitrary saw function. Any string d in S for which - ..

SRf {s I lop(s)<d for all k >0} will be called a discriminant for f and will be
denoted by discrim(f).

Thus, a discriminant for f is any string by which one may readily discriminate
between members and non-members based upon a "lop test." Theorem 8 -"

demonstrates that lsF(l ) is a discriminant for a signature-distinct saw function f
The discussion below will show that this is indeed the only discriminant for f.
justifying the functional notation discrim(f).

DEFINrrMON 21. A sequence so s, s, in S is said to be lop-maximal if for all %
k 0, lop(s) .

% % o 
'
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(Note that non-lop-maximal sequences exist, e.g., 010111..., as well as lop-
maximal ones, e.g., 11000....) Z

THEOREM 9. For any extended saw F, IsA 1) is lop-maximal.

Proof Recall that the lop of the left-signature of x produces the left-signature of
. ~F(x) when x is not equal to b, and of I when x equals b; thus lopping takes left- ,

signatures into left-signatures. By montonicity of signatures ls,41 ) is the largest %

possible left-signature of F; the theorem immediately follows. Q.E.D. ?, '

THEOREM 10 (Continuity of signatures). Let F be an arbitrary extended sa'. If '

Xo x1 x2 ... is a sequence of points from [0, 1 ] converging to some point x of [0, 1]
from the left, with no xi equal to x, then for an' choice of signatures s', s' ..... for the
x, the limit lim s' in the < ordering on S exists and is equal to lsAx). Similarly if

Yo Y1 Y2 ... converges to y strictly from the right, then for any, choice of signatures
t, t ...... for the y, the limit lim t exists and equals rsy). ',

Proof The proof is straightforward and will be omitted.

COROLLARY 1. Let f be an arbitrary saw and F its extension. Then

sup SRf = Is, I).

Proof By Lemma 6(c), SR = {s I= rsAx) for x in [0, 1)}. By monotonicity of
F-signatures, it is immediate that Is,41) is an upper bound for SRf. By continuity of "
signatures if {x,}, x, in (0, 1), converges to 1 from the left, rs,4x,) converges to
ls,4 1). Hence a sequence of elements of SR1 converges to an upper bound for it; this .,,

upper bound must then be the sup. Q.E.D. a

COROLLARY 2. Let f be a signature-distinct saw-function. Then the discriminant
for f is unique.

Proof Let d = sup SR 1 . By Corollary 1, d is equal to Is 1) and is thus a dis-
criminant for f, since d is certainly not less than itself, d is not in SRf. Suppose ---- '.-
there were a second discriminant da for f By the very definition of discriminant d' is_%
an upper bound for SR 1 . Hence d' > d. By the lop-maximality of d (Theorem 9), d

__thus satisfies the d'-discriminant criterion for being a member of SRf. Contradic-
tion. Conclusion: there is only one discriminant for f Q.E.D.

Can signature repertoire content for a signature-distinct function be narrowed
down any further? In terms of the present development this amounts to asking

. • whether discrim(f) can be an arbitrary lop-maximal sequence or whether there are

further inherent restrictions on its structure. The following key result yields yet
another restriction on the form of discrim(f).

% THEOREM !1. If F is a signature-distinct extended saw then discrim(f) contains

infinitely many Is.

b..
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Proof. By contradiction, suppose discrim(f) contains only finitely many Is (it
always contains at least I since discrim(f)= ls I1) and hence the first bit of dis-
crim(f) is a 1). Thus it is of the form

discrim(f) = so s, s2 ... s, 0 0 0...,

with Sk = 1 for some integer k > 0. Since discrim(f) =Is, I), it follows from the lop-
ping properties for extended saws that 100... is a signature of P ( I). Now 100... is
also the right signature of b, the breakpoint of F, and, thus, by the signature-dis-
tinctness of F, it must be that Ft ( I) is equal to b. Since b can map to 1, it follows
that I has an orbit that periodically returns to itself. Since this orbit always uses Fo
(as opposed to F,) whenever there is a choice it follows that the signature of this
orbit is ls 41), the least signature of 1. Conclusion: Is,( I ) is periodic and thus con---." .
tains infinitely many I s-a contradiction. Discrim(f ) must really contain infinitely
many I s. Q.E.D.

We can go no further is reducing the possibilities for discrim(f ): any sequence of b
Os and Is which is lop-maximal and which contains infinitely many Is can really "
arise as the discriminant of a signature-distinct saw function. This requires
demonstration of course! The next section will substantiate this assertion by -
actually constructing the requisite function f. Remarkably the constructed f will
always be piecewise-linear with parallel pieces, yielding as a bonus the theory of

.. piecewise-linear prototypes of Section V.

IV. REAL-RADIX NuMBER SYSTEMS

In this section we introduce a simple generalization of standard positional num-
ber notations, of which the binary and decimal notations are familiar examples. The
essence of the generalization consists in allowing the radix r of the representation to
be an arbitrary real number r > 1, as opposed to an arbitrary integer greater than 1. ' '.'
Although our development could be carried out with full r > I generality, we shall
insist that r be confined to the range (1, 2]. This assumption allows us to employ
the results of Sections II and III to develop rapidly the properties of these number

W systems. The goal of this development is reached in Theorem IS: any lop-maximal - .-

sequence with infinitely many Is is a discriminant.
The proofs of Theorems 12 and 13 in this section are straightforward and will be

omitted for lack of space.

DEmINmON 22. Given any real number r in (1, 2] and any real number x in
[0, 1) define the radix r representation of x as the sequence qo q, .. of integers given
by the "Radix r Representation Algorithm":

Step I. Set s= l/r, xo=x, and i=0.

;.p .. , ,. .-4
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Step 2. Divide x, by s '*+; let q, be the integer valued quotient and let x'" 'be
the non-negative remainder. Thus

xj=qs+ I+x,+I with 0<x+,<s4.

Step 3. Set i=i+1 and go back to Step 2.

THEOREM 12. Let r, x, s be as in Definition 22, and let q0 q, ... be the sequence
derived by the above algorithm. Then q0 q, ... has the following properties:

(a) each q, is either 0 or 1,

(b) x=qos'+q,*s2 +....

(c) x= qk*s +qk+I*sk+
(d) sk>q,,*s*+'+q,+I*sk+2+ ..... '....

The Radix r Representation Algorithm insures that every x in [0, 1) has a well-
defined representation which, by (b), faithfully represents x. Statement (d) implies --

that not every sequence of Os and Is actually arises as the representation of some
quantity in [0, 1). Indeed for any r in (1, 2] the sequence consisting all of Is fails to
satisfy the inequality. It is important in the sequel to know exactly which sequences
of Os and Is actually arise as radix r expansions of numbers x in the interval [0, 1).
Condition (d) turns out to be sufficient as well.- "

THE..OREM 13. A sequence q0 q , ... of Os and Is is the radix r expansion of some x
• . ~~in [0, 1 ) if for all k > 0 ."" ,

s >qsskI +qk+,Ssk+
2 

+....

The x yielding this expansion is unique and is given by q0 s+ q, • s'+ ....

DEFINITION 23. Given r in (1, 2] define RRNS(r), the real-radix number system
"F'. of radix r, to be the coliection of all strings output by the Radix r Representation .

Algorithm in response to inputs selected from [0, 1). Define E,: [0, 1) -- RRNS(r)
as the function which associates with each x in [0, 1) its expansion in RRNS(r).
Define V,: S -+ the real numbers to be the function which associates with any string .

SO S2 .- the real value x = so/r+s/r 2 
+ ....

Note that V, is a continuous function for each r and that V, restricted to .'-

RRNS(r) and E, are inverse mappings. Also note that we may summarize '

Theorems 12 and 13 by stating that RRNS(r) {q I V,(lop*(q))< I for all k >0}.
The alert reader will immediately observe the formal similarity between this .
representation of RRNS(r) and the representation of SRf as given by Theorem 8.
Could there be a connection? ..,..

DEFINITION 24. For r in (1, 2] define the mapping f,: [0, 1)-- [0, 1) as follows: '--

%'. . .,

".-.-,'....',-,.,.'- "-:, .- -- -- ". ". -.--.- .- .-- ,,-.,-..--- .- 1-- -- -. -.



~W"~~b -~ ,M -~ ~b .- jg- -., -wp.-. -F yj r-.w-y,-yy, -- -j,- - - , .- -

NON-LINEAR DISCRETE-TIME SYSTEMS 57

given x in [0, 1) with radix r expansion qo q, q2 .... take f,(x)= q, /r + q2/r+ ...

Thus f,(x) is obtained by "lopping" the radix r expansion of x.

THEOREM 14 (Link between number systems and saw functions). f, is a __.

signature-distinct saw function with breakpoint l1r. For an) , x in [0, 1) sigf,(x) is " ,

equal to E,(x).

Proof We claim that f,(x) is given by the formula

f,(x) = rx if x is in [0, l/r)

=rx-I if xisin [l/r,1)

for if x < lir then q, (in Definition 24) must be 0 by the expansion algorithm and ,- .

consequently f,(x) is merely r times x. If x> lIr then qo = 1 and so f,(x) is rx - 1. %."

Figure 5 shows the graph of f,(x). It is clearly a saw function with breakpoint l/r. r- ,.

Since its pieces are parallel with slope r, which is greater than 1, f, is pse and hence_,.
signature-distinct by the Monotonicity Corollary 3 of Section II. The lopped .

sequence q, q2 ... clearly obeys the inequality of Theorem 13 (since q, q, ... does) and
thus is the radix r expansion for f,(x). So, by induction, E,(fk (x)) = lopk(E,(x)) for
all k. Hence the first term oflopk(E,(x)) tells whether or not f (x) is less than I'r. "e
That is, E, is equal to sigf,. Q.E.D.

COROLLARY I. E, is strictly monotone increasvig.

Proof This follows immediately from monotonicity of signatures applied to f,.
the signature-distinctness off,, and the equation E, = sigf,. Q.E.D. ..-

COROLLARY 2. RRNS(r)= {q I lop(q)<discrim(f,)}; thus there exists a dis- . .

criminani sequence for determining membership in RRNS(r).

Proof By Theorem 8 of Section III and the fact that RRNS(r) = SRf,. Q.E.D. "

COROLLARY 3. V,(discrim(f,))= I and, for all k > 0, V,(lop(discrim(f,))) < 1.

,-, .,4:.
r- I

.4.

FIG. 5. The prototype saw function f,. ' " -  j,

6.
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Proof. Let x, be a sequence of points of [0, 1 ) converging to 1. By continuity of
01' signatures (Theorem 10), rs,(x,) converges to ls+,(l ), where F, is the extension of

.,. Consequently lopk(rsr,(x,)) converges to lop(lsr,(l)) for all k. Hence, by the
continuity of V,, the numerical sequence having as its ith term V,(lopk(rsF,(X,)))
converges to V,(Iopk(is,,(1))) for every k. For k = 0 the indicated numerical
sequence is just x,, since for x < rsF,(x) is equal to sig,(x) (Lemma 6(c)) and we
have just shown that signatures under f, and notations radix r coincide. Because
the x, converge to 1, and because V, (any signature of f,) is < 1, the relations in the
corollary statement immediately follow. Q.E.D.

We are finally in a position to demonstrate that any lop-maximal sequence with e., ..

an infinite number of Is is the discriminant of a signature-distinct saw function. We
show

THEOREM 15. Let d = do d, d2 ... be lop-maximal with infinitely many Is. Then
there exists a unique r in (1, 2] such that d= discrim(f,).

b Proof of Uniqueness. If d= discrim(f,) then V,(d) = I by Corollary 3 above.
Hence r is a root of g(x) 1, where g(x)= do/x+d,/x2+.... The function g(x) is
strictly monotone decreasing on the nonnegative reals and consequently has at
most one root in the region of interest. Hence if r exists it is unique.

Proof of Existence. Let R={rld is in RRNS(r)}. If d=Illl.... then
d= discrim(f 2 ) and we are done. If d is not equal to I l..., then no tail of d can be
111.... either, since d is lop-maximal. Hence V(lop*(d)) < I for all k. Consequently
d is in RRNS(2) and therefore 2 is in R. Thus R is non-empty and inf R exists. Call
it Y. We claim that d= discrim(f,). We do this in two steps. We first argue that
V,(d) is equal to I as follows:

(a) for any t>r t is in R; hence dis in RRNS(t) and V,(d)< 1;
( (b) since d is lop-maximal and V, is strictly monotone increasing on

RRNS(t) (being the inverse of E,) V,(Iopk(d))< V,(d) for all k > 0;
* (c) from (a) and (b) and the continuity of V. as a function of x "- .-,

. V,(lop(d)) < V,(d) < 1 for all k >0; -
(d) if V,(d) is not equal to 1, consider the family of maps {g,: (1, 2] - reals} . ,

given by gk(x) = V,(lopk(d)). This family of maps is equicontinuous. If V(d) < I
-then there exists t <r so that for all k >,0, V,(lopk (d))< 1, i.e., t is in R. This con-

tradicts the definition of r. Thus V,(d) equals 1.
We now show that d=discrim(f,). Suppose d<discrim(f,). Then lop*(d)<

discrim(f,) by the lop-maximality of d, and this implies d is in RRNS(r), con- , .
tradicting the fact that V,(d) =. -

If d>discrim(f,), we look for the smallest position k for which these two strings
differ. Consider lopk(d). It has an initial term of I and hence has value > l/r (strictly
greater due the presence of infinitely many Is in d. Similarly lop'(discrim(f,)) -,
must begin with a 0 and it follows from Corollary 3 above then that

,,- .. '.

* .S.~"%.-; ".,

.. . . . . .. ..*" * ".*"
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V,(Iop(discrim(f,))) has value < lr. Herein lies the contradiction. V,(discrim(f,)) ,r
and V,(d) both have values of 1; hence these two tails must have the same value.

Consequently, we have neither d<discrim(f,) or d>discrim(f,). so
d discrim(f,). Q.E.D. I

V. THEORY OF PROTOTYPES FOR SIGNATUR-DIsiTNcT SAWS

The goal towards which the foregoing material has been aiming is that every
signature-distinct saw function is isomorphic to one of the functions f, introduced ;_,
in Section IV. We are now in a position to formally demonstrate this result.

THEOREM 16 (Prototype theorem). Let f be a Tignature-distinct saw function.
Then there exists an r in (1, 2] such that f is isomorphic to the piecewise-linear,
parallel piece saw function f,.

Proof. By Theorem 9, discrim( f) is lop-maximal; by Theorem 11 it has
infinitely many Is. Hence by Theorem 15 there exists a unique r in (1, 2] for which
discrim(f =discrim(f,). Hence by Theorem 8, SR1 = SRf,, and, by Theorem 3, f le I

and f, are isomorphic. Q.E.D.

THEOREM 17. The following are equivalent statements about signature-distinct ..

saw functions f1 and f 2 and their respective prototypes f, and f,,:

(a) discrim(fl) < discrim(f 2 ) %

(b) SRA is a proper subset of SRhf
(c) RRNS(rj) is a proper subset of RRNS(r 2)

(d) r, <r.

Proof. We show (a) ifT (b), (b) iff (c), and thien (c) iff (d):

(a) iff (b). Assume (a) is true. Any string with all its lops less than
discrim(f,) has all its lops less than discrim(f 2); thus SRf, is a subset of SRf: by
Theorem 8. It is indeed a proper subset of SR., since discrim(fl) is certainly not a
member of Sk, (it is not less than itself), but is a member of SR, s;.ice it is lop-
maximal and is less than discrim(f 2 ).

Conversely, if discrim(f,) = discrim(f 2), then by Theorem 8, SRf, is equal to
SRf,. If discrim(f,) > discrim(f 2 ) then, by repeating the above argument, SRI, is a .
proper subset of SRf,. Thus contradictions arise for either assumption. The con-
clusion: discrim(f) < discrim(f 2 ).

(b) iff (c). By Theorem 14, Corollary 2, note that RRNS(r,) = SRf,, = SRf,, "

and RRNS(r 2 ) = SRf,, SRf2 The result is immediate.
(c) iff (d). Assume that r, < r2. Recall the characterization from Theorems 12

and 13 that RRNS(r)- {q V,(lop(q))< I. Now for r < r' it is always true that

e
' .

,- " . - .

%
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FIG. 6. Isomorphic saw functions. P ,.

- A"

uo/r+u,/r 2 +... <1 implies uo/r'+u1 /r' 2 +... <1 for any sequence u, u. It is .f ..
immediate then that RRNS(rl) is subset of RRNS(r 2). It is a strict subset because :.9
the string discrim(f,,) is not in RRNS(r)--by Theorem 14, V,(discrim(f,,))= I-.
but is in RRNS(r 2) (since V, (lop*(discrim(f,,))) < I for all k, by Theorem 14, then -
for all k, V,,(iopk(discrim(f,))) is < 1, since r, <). "- .

Conversely, if r, = r2 then certainly RRNS(r,) = RRNS(r 2); if r, > r2 then, by the ,. .V
above argument, RRNS(r 2 ) is a proper subset of RRNS(r,). It must be then that
r, < r2 . Q.E.D.

The above theorem is significant in that it shows that every signature-distinct saw
has a unique prototype, which in turn corresponds to a unique radix. In informal
terms the family of prototypes is a 1-parameter family-r being the parameter; as r
increases from I to 2 the signature repertoire of the prototype increases accordingly. .%.
Any signature assumable by f,, is assumable by f,, iff r, < r2. This property reflects
back to signature- distinct saws; by comparing discrim(f,) with discrim(f 2 ) we can
determine which saw can "simulate" the other-a rather remarkable result.

As a consequence of this discussion we can immediately conclude that the two
saw functions illustrated in Fig. 6 are isomorphic: they are both signature-distinct .- ,, .... ,
since they are pse, and their respective extensions share common signatures for 1 I.
(and hence a common left-signature).

VI. CONCLUSIONS
A.-% '..

The following results have been derived:
'L %. •..

(a) Every saw function has a signature repertoire. Two signature-distinct saw
functions are isomorphic iff they have the same repertoire.

(b) For every signature-distinct saw function f there exists a unique" string "
discrim(f) called the discriminant of f. such that an arbitrary string s is in the .,. ..

• .., .. .'.

p'- "..* '. ;A... A
A-A

V % % V
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signature repertoire SRf of f iff all "tails" of s, and s itself, are strictly less than dis- %
crim(/ ) in lexicographical order. %

(c) discrim(f) may be obtained as either ls 11), where F is the extension of .,, .-
f, or as sup SRf.

(d) The collection of discriminants so arising can be characterized in strictly
string-theoretic terms: a string d is the discriminant for some signature-distinct saw r
function iff it is lop-maximal and contains infinitely many Is.

(e) Discriminants d are in one-to-one correspondence with radices r chosen
from (1, 2]. The correspondence is given by r is the unique positive root of do/x + it
d,/x 2+... 1.

(f) Each discriminant arises from a particular 2-piece piecewise-linear saw
function. Consequently every signature-distinct saw function is isomorphic to one of
these prototype saw functions.

The theory of prototypes has far-reaching implications. The iterative structure of
any signature-distinct saw function may be studied by considering the structure of
an isomorphic parallel-piece linear saw. Fixed points, periodic orbits, orbital
topology, asymptotic behavior, and ergodic properties of orbits-all can be
investigated through consideration of these elementary constant-slope, piecewise- %-.-'.
linear maps. The simplification effected is indeed remarkable in extent. .

Due to the central role played by piecewise-linear functions in this theory, and
I also due to the ability of piecewise-linear maps to approximate the behavior of

more general maps, the iterative behavior of the piecewise-linear family becomes an VAL_
especially interesting research topic.

Perhaps the most discouraging aspect of the theory expounded here is the num-
ber of restrictions placed on the class of systems studied: a 1-dimensional state
space; autonomous operation; transition functions which have two continuous and
monotone pieces; signature-distinctness. We believe however that the methods .
employed in this paper will routinely extend to general 2-piece functions (f(0) =-0
and so on not required) and also to p-piece functions with p > 2. The general areas :. -'--
of non-autonomous systems and of higher-dimensional systems remain totally
untouched topics.

A special reference is required for three pioneering works on number notations
and prototype theory, works unknown to the authors for more than one year after - ,
their own independent work in this area. Everett [2] apparently first investigated
the existence of real radix number systems; Parry [ 10] then thoroughly developed .- ',.'
their properties and [I1] derived a prototype theory by means of ergodic theory e-§ '"
methods. The interested reader is referred to these expositions for an alternative
exclusively mathematically oriented view of number systems and prototype theory. .
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Abstract

A theory of orbital behavior in certain autonomous one- ,

dimensional nonlinear systems is pursued. using an approach
based upon the concept of (orbital) signature. Particular --

attention is paid to the fixed point structure of such
systems with the ul timate aim of usi ng the sig nat .rF-.-
repertaires of these systems to character ize f ix ed--poi nt -'-'

orders and the presence of chaos. A system-theoreti -

approach is pursued here --- an approach which compiementS
other recent studies of a more analytical nature. Chaotic 
behavior in a certain subclass of these system is completely-.
characterized in terms of the first t o iterates of a "
specif ic known point in the range of the system transitiion %
funct ion.
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symbol meani nq W

f a generic unimodal or subbell
f unct ion

f for k :> C' the kth iterate of f
A .- -. .

sig(X) the (infinite) signature of
under f

ordinary order on the real line;
Gray code order on binary strings

sigk(x) the k-signature of x- under f

].s(x),rs(i) the left,right signatures of

2sk) ,rs (x) the left,right k-signatures of x

/.../ absolute value .* '

S the signature repertoire of -

Sk the k-signature repertoire of -f
JI

sequence concatenation

set intersection *-

U set union

s*j the ith rotation of s .
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I. Introduction :

There has been great interest in recent years in the
orbital behavior of autonomous nonlinear one-dimensional
.ystems defined over the unit interval [,i] ..

There is, in particular. interest in the so--cal led ,-h.,a ,-t
behavior of the equi 1 ibrium, or fixed, points of such
sy-stems. This behavior manifests itself even in processes
describable by simple first-order difference equations of *- .
the form:

1 f (X ) ()

where f: [0,1] -> [0.1].

Various approaches have been employed to anal z '-;z -

systems of form (1), ranging from graphical methods ., to
purely analytical techniques and erqodic theoretic
constructs A system theoretic approach, introduced by
Klein and Kaliski (and cited above) is pursued in this
paper. We view the function f as the state transition map
of an autonomous one-d i mensi onal nonlinear di screte--t i me
system. The concept of signature, defined below, is used to
characterize the orbit of any given initial system state.

This paper analyzes the fixed point structure of these
systems through the use of siqnature rep(_rtoire-. Our '

development is necessari ly somewhat detailed due to our need
-.j to formalize and introduce certain fundamental concepts. "

Our resullts prove to be of intrinsic interest 4:or the
F .ol n.owing two reasons: ;.

(i) Chaotic behavior (the presence of fixed points of
all periods) in a broad subcl ass of these .svtems -- the
'i.T. igrature-distiflt we.I-structured ur i ,aI --- is
characterized strictly in terms of the fii-st two iterates of
a seci f i c point in the range of the syst eT transition .
f unc:t i ,on. Hence a highly constr uct i ve test for C haas

;] e:< i sts. -.. i

(ii) The uti l ity of the signature concept is thu.S
% alm-1ndemo,_nst rated, a concept with complements alternate methods

I hat draw upon more advanced ergodic theory and measure-
theoretic treatments of the subject.

Much of this- work appeared in a somewhat different -format i -
ona, of the a.uthors' doctoral di.-sertation 1,

• . , 'A ..

-b.
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I I Basic Concepts: Unimodals, Subbel s, Signatures and ".-
Gray Code Order

The concepts below were first introduced in the cited
work of Klein and Kal iski . They are therefore j.ust

summarized below.

I I Unimodal and Subbell Functiors
0

Definition I: A uni dal function is A c~ntinuous map
f O [0, J.I [,C I for which (Figure 1):

(i) '- has a unique maximum q at some point p in (0,I),

(ii) f is strictly monotone on [ p] and on [pJ 1.

We term p the b-e.kpoin t of f , and q its peak iaue 111

DefiniLion 2: A subbell function is a unimoda1 f'uFctio n
obeying ,he additional constraint below (Figure ".-.

(iii) f (0) = f (1) .

C The name subbe]! is derived from the relationship of these
functions to the bell functions cnnsidered in rf.,ere-nce i .;
the bell function is .idditional 1y constrained to obey f(p=

This paper is primarily' concerned, from an exposi ti ona 1
point of view, with .. ..subbell functions, alth,,qh many ofF th-
r- resul s rapidly generalize to the more e,,tensive class o-.

unimodal functions. In section VII we ,X'.am.n ne one tzev
aspect of this issue in more depth .... the presence of
ch ati c re 1 imes in u.nimodal -Functions., We see there how we
-an associ ate with . given ,,nimodal an appropriate .Subb,.l I
a,,.. hou orb:i. -:.1 properties of t ,e uniinodal natural 1,, der i..vs-.
-Fr-, c, rrospodnding propert:ii es of the as sci ated ubbel I 1
f .. ;: t i on'

T 2 Finite an- In-Finite Siqn:atures

t .- f be a q i. v en subbel W r i te- for I 1 i t-
,:,nnt:e the kth i ter..-'ate of f , i.e. the <.-fold comosi tion o.-F

•ith itse. f De.1ine f+ to be f and define + to b c the
i.deni.i ty map, i.e. f'',(v) = v, fot- all '.

D int nLet be b .='ctv-en. --,loncl -'ith i.;- F,: KJ
The 4 i7' --s . , t r? af tufl,

1
E 1, 5 ,) ., .rtd c er , t I.

"tring b, b ... b ... , where, for j. ,1 .. I 1:,

b,, :.f f. ' is in [C, 0,'
%a• 7.-

.,. ~ a...,. -,. -: V..%. '.:.**- ..
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= 1 i if fi (Ox) is in (p,1] ,

If f 1 (x) =p, we set bt to a .... . .

sigk(,<) will be called reqular if, for all i, b, is 0 or 1,
but not .. If sig(x) is not regular. it will be called -
irregular.

The (infinite) siqnature o-f x. s io(< '-I
similarly defined as the infinite sequence o.f points in
.C,1.,-) obtained by letting k range over all the positive
integers. We say that x is regular if siq(.) is reQular-: ; '-
otherwise we term x i rrenul ar. Note that if ;.: is regular
tlen, for all k sigk(x) is regular, and conversely. -

I I. Gray Code Ordering v pL.

We can define a total order upon binary strings (not
nocessar ily regular signatures) which the reader wi I I a'
recoonize as Gray code order: a,-

Definition 4: Let "s'= bn b, ... and s = d, di ... be
two binary sequences of equal finite length, or o-F both
infinite length. Then s' < sl if s' is not equal to s and,
denoting by j the bit position at which s' and s2 first
differ (j > 0) ,0

(bc, + ... + b.) mod 2 = ' . .

(d,-, + + dj) mod 2 1

This order relation is fundamental in the theory o
signatures, in that alli subbel 1 functions obey a
mo)to-)icity of siq:natures property (monotone with respect
to this order). We explore this in section II.5.

". Note that we use the symbol to denote both
conventional numerical order on the reals as well as the

u s!: defined GrAy -ode orderi nq on sequences. This will
• - po:e no problem in the sequel as the contexit of it- ,-. wi' ,

SO .1 ~a.,/I va be apparent.

I I. 4 Instances of Irregular Si cnaturez, i .n a t ur e.
• -, , ORen-er-t o i r~m ,e s -

Definition 5 Suppose sig(:.) iE ir-rejUl.ar .for -=ome An ""
i;ta,-e of sig(x) is an'/ binary string obtained from si ,.

by arbitranriIy inserting CDs ard 1 f or each in siQ '.

We term the lea-;t such instance nbt.ined, in the < ov-derinig.
the lDft-..s ',ra ' ,t .:, 1s( , we -er . t h 'e te.t h .-.

" 'i. -1' ;IT.- n e o bt ai r-te d h r r z ,7 , t I' q- , r.,, Ui .1 - o r. f '-i I bt-.-• . . .- . ... ~ 3 . 3L
:as to Show th -It l(> ;, .- nd rF,( i 1 d ifft in iu-st one

p,:;i t i on, th, pi. s: i o ,-jhere h.e fir 1717 C I , ,S Th i -l I~~ii v.: o e n i F ' i. h m,.: n~:; ~ r t h an n )n,= r - ;, hD Ek.. -: h .. ,' j -
L. .>. '. , .= ...i h. (. . V.'..iv" -""" "' i '" -% k;

.a . . ..,



irrequ.ar we define is( ) rs (x) si ., In this case we t:
can therefore re-Fer to sig (x) as eit her 1 s ., or rs (x. "I
without ambiguity and will do so at times in the sequel,-
whenever convenient to.

These definitions extend in a straightforward ka Y to
finite si gnatures, and we rit e the left and ri ght k- -

signatures of as isk(x) and rsk(x), respectively.

Definition 6: The k-signature repertoire of f denoted b,
S , is the set of strinas:"

S1 = T rs " , ,., in [.,1] } U { Isk( ' ) , s in [(-,I]

The signature repert re of f. denoted by S, is the set of
-t r-inas-

S = f rs( ), x in [C',:1 } U { =('.), " in [CI } .

Th:us the signature repertoires consist of all siQnatUres of,
reclular points, and the greatest and least sianatures of
all irregular points.

I1.5 Monotonicity of Signatures '

All subbeil functions, as noted earlier, obey the
following property. We cite it without proof. The proof
appears in reference 2:

Theorem 1: Let f be a subbell; let x. y in C0,1] be qgiven _
points, x y. Then for all 1 rs k(x) < isk ') and rsx

,Note that in general we cannot strengthen the inequality
to We return to this matter in section V. '. .

J.1.,

.... ---
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III. A Roadmap for the Technical Developments to Follow

In Section IV we examine certain recursions .-or
cal Culating the k-siqnature repertoires of subbells. Wer• .b % %

will see that the role of the left signature of the peak e-%
value Q. is central to these formulae. In Section V we begin -- ,
to examine the issue of fixed point existence for subbells.
Necessary and sufficient conditions for the existence of .
fixed points having given finite or infinite signatutres are
derived. We follow this in Section VI by an in depth
e,.xami nat i on of fixed point order s and the conditions

necessary for the presence of chaotic req!es ... the
presence of fixed points of all positive orders. Necessar- '
b<-c .:ig-o und material is introduced as needed; the reader is
often referred to the cited references for proofs of many of
the subsidiary results presented.

Section VII examines the more general class of Unimodal
functions in the context of the earlier sections of the
paper. We associate with an arbitrary unimodal a subbell
for which our developed theory applies. This allows us to

3 rapidly derive analogous properties for the unimodal family. '.

,; .. p

,.\ .' "
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IV Recursions +or Determining Signature Repertoires ". -

We present two recursions that tell us how to compute
(k+1)--siqnatures from k-signatures.

Theorem 2: 2 For all k" 1

S k  
- , ) Sf S [ i k

' (0); ls k' (p) } i

{ 1 SI [ rsk-l(p) rs (1) ]3. -

where the denotes sequence concatenati on, - denotes
intersection, and the square brackets represent closed
intervals in the < orderinq on binary sequences. We will
often omit the concatenation symbol '" when its presence is
implicit and unambiguous.

Since any subbell f obeys f(0) = f(1) = C1, it is %.%
immediate that ls(O) = sig(C)) = 000 ... and rs(1) = sig(1) =
10') ... Further, ls(p), by definition, is equal to C)-Is(q)

similarly rs(p) =-ls(q). We may thus simplify the above
recursion to read:

S
k ' '

l 
C 

= 0 { Sk q) U

- . t '

1 { S" .k [ (h, lsk(q) I ,

Observinq that . , we have the fol lowinQ.
alternative formulation of Theorem 2:

Theorem 3: The finite signature repertoires of a subbell
are determined recursively as follows:

(i 1

ii) ,S- - = I ' Tk U I T,

where Tk consists of those k-signatures in Sk whi ch are r
ISk (q).

This formul at ion of the recursion u nder scores the,7'..
sig.nificance of the peak value q 0+ the subbel 1. In
"signature space subbells form a one parameter -famil, of
functions, the parameter being the left signat.ur e f- the"
pe._1k vaue of the subbel ] .

.* -*, * ,.P



V. On thte Existence of Fixed Points Having Given Finite ,7..
and Infinite Signatures " ,

We are concerned with the existence of fi,.::ed points of
f + a subbell I or Various vaIlues Of- k havinq ciiven - ."
finite and infinite signatures. A f i..ed 1.po int aof +is a .... '
point "ofor which f xo k C-, and represents a Value .oh i ch "'
repeats with period k under iteration of f. Tco expedite the .. -.
developments below we Must introduce a few more notions:.

V. 1 On Rotations and Shifts of Sequences,_)..

Let s be a k-bit sequence. Denote by s*j the sequence ' ".'
obtained by rotating s circularly jbits to the left, <J ... ,

% "k.We term s*j the _Yth left roainof s. Define s*0 to.,.#
be equal tos.

a.- % .~

De-finition 7: The rotational maximal of s, rm(s), is the "' '

1largest Such left rotation o f s. s is called r t at.7, on
max mal if rm (s) = s.'- :.-'-

The sequence 1001, for example, is rotation ma-im-al '
There may exist, in general, more than one value o f .j for %. %.•'
which rm(s) =s-j• For example the sequence s = 01 1011 has : -
rotational maximal rm(s) =101101 , which is equal to both %----....

. ~~..._ ,

s*'2 and s *5. In all cases, however, rm(s) is well-defined .:and unique for a givens o x i H n v n

Asimilar concept applies for infinite binary sequences s.

The jt left shift o s, L(s), is thee oeuec obtained bf
shifting s L bits to the left, thus "lopping off" thhei J
lefmost bits Let L(s) denote the set of all left shifts
of s, i.e. Lwi fk{xL) (s), x. Derfine La(s to be

Definit ith iod: The ,znft ra.eimal of s, Tdi-t, equal te

SU su (L (s I When Z is equal t o sm n s) V4e t2r-,vl :5 sh es "
de v .lm b eier o

The setuene aO01 1C 1-.bi .s eoe eaTpe i s --h Ft me.unc -.- T,.

Nobf'D- that irnotn s is not n element o L n. C .
case when s s Ch 1 C) lC:,0Ct t... here sm. Define .... t

.*o , .',-a-

It cain be proved that Is(q) is alays shift rmas)F , i the,.
-anrst ubbel . Thi r. S a uo3.: ..-. t tls Ille ri,

-aia if rfs s.1cltL

Te qs.., e 1emis t o

V2 aISignalatlovre Bins

an d t b,, be a g igvnen in-finitE bi na . ,

a.•o .~ a. "

-.. ".-... .".-",. -",. - .-. -'.. "" s-mi-rvconcept'applies•fo inf nit bi ar sequences...... .--...- 'v-.. "-""""



Definition 9: The A-signature bin of s, k > I, i s the set ----

Ak = {x such that Is :,N) or rsk(,.) =b,, bi ... bk-}

From Theorem I (Monotonicit'y of Signature~s) it follow.-, that ]"

• -. .. .... - ° °" .

A,, if non-empty, is an interval in [0,1]. In fact it is a -.---.

closed interval -.-

Definition 10: The signature bin of s is the set s e

A = x such that ls(x) or rs(;..) =s , b1  ' .'1

It again follows from Theorem 1 that A, if non-empty is an

interval in i n e , i and in fact sanisties it-15-.

A = .A,,.

where the intersection is taken over all values of k. H e n ce ._.
A is a closed interva as well.-

.V. 7 On Fixed Points of fkand Their Signatures

We can now begin to turn to the central issues of this . -

paper, the necessary background material in place. We will
be addressing three questions in the pages that follow in
this section:

QUE'TIN I: When is an infinite binary sequence s in the ' -"

signature repertoire S of a subbell fT

Q1JE.7TZI " 2. When is an infinite binary sequence s in S the
left or right signature of a fixed point of fk' for some k

0UESTIN .: When is a given length k binary sequence s the -- ,
left k-signature or right k-signature o A point of V V

-for a given value of k? %

We address these questions in turn through a -sequence o-1 ..
Theorems and Lemm s We begin with our first qu s-ion:

Lemma 1 Let f be a subbell, s be a given infinite binary ..

sequence. Then s is in S, the sionatur repe-toi re of f
J. and only i f , for a.]. k , every k-iruncat i. on of s is in
the k...-siqnat.ur, rep.rtoi. re of F. (Dv 1::-truncation k.o- ,nean
the f rst k bi ,f s, t

-a 'eN-
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roof.).o : The necessity of the condition is obviouS, as the k..
truncation of a left or riciht signature is a left or riqht
k-signature. As for -u-fficiency, suppose every k-rncation
f or s is in S . Then each k-signature bin A, is non-empty,
and as noted, is closed. Thus A A , is non-empty also.
Dut by our earlier remarks, A is the signature bin of s.

e,, Thus s is in S. QED

We can now provide a complete answer to Question 1: ..

Theorem 4: Let s be a g:iven inf ini te bi nary sequence. Then
s is in S. the signature repertoire of f, if and only if .

< ls(q), -for all j : .

Proof: (->) Suppose s is in S and is equal to is(X or rs<'<) -,
for some point x. in 0IECJ. Every shift of s is in S and Js 
the left-s.ignature or right-signature of a point in the

orbit of 1-f . Such points, from the definition of q as the
peak value of f, have values less than or equal to q. If q
is not in the orbit of - then, by Theorem 1, Li(s) is(q)
fTor all > ', and we are done. If q is in the orbit of
then so is p, the breakpoint of f, and it is je-a sy to verifi -

that all shifts of s corresponding to those iterates of
equal to q are equal to Is(q). All others, by Theorem 1, ..-.-.
are less than or equal to ls(q). The conclusion follows.

(::-) Suppose that La(s)_< ls(q) for all C 0. Write s as
b c b1  ... We are going to use the recursion of Theorem : . w
Since bo is clearly either 0 or 1, it is in S*, as is b,.
Since b1  is the first bit of L 1 (s), and L1 (s) I s(q, b.
hypothesis, we have b1L isl(q) and thus deduce b-y Theorem --.
13 that bo b1 is in S2. Now consider bc. b, b2 ... It is .

easy to deduce by an argument similar to that just giv en
that b, b= is in S2 , further, b, b- are the first two bits .
of L,(s). Thus, with Lz(s) is(q), again by hypothesis,
b, b= is2 (q). So again by Theorem 3, bc: b1 b= i.: in ':.-
Ry repeated use of these arquments, we find that every k-- ,-.
truncation of s is in . From Lemma 1, then, - is in 8 as
desired. QED

Having dispensed with our first gruestion, we can no,- -
-. t ur, to ._ostio 2. We mucst settlE:. .r a pa rtial answe e--,

hoqev- , F or al though i t i . certai n I v tiue that 1he .'

siOnatu.e of a fi>. :ed point of fk is periodic with period k,
It left or right s:ignatue may not. be (one-always will be

k.s ,w j. 1 1 e e sh rt V.

Tho..em 5: Le L I: I be liven, -along with . UbbrlIL , ndinf inite binar- scquence : in S. 1' n i-F - = - per i oci ,: h.J.-:

period !: there i, a c. fi>xed point o:: of F for which 1- '(--
S 7-, 0, s.

,""
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Proof: Let A. denote the i-signature bin of s, and A
the sinature bin of -S. Since s is in S. all the At and A
arFe non--empty cl osed i nterval s in E 0 11. Now it is %

1Y certainly the case that A J z J and since A .
it 1s also true that A = .- , I i = 1,2.2..

From the assumed per iodi city of s we know that fk(Aik).
E A<1-,, for all i 2.= Thus -F(I) [ A - "ik

where the first intersection begins with i=l, the second
w ith i.=2'. But we may re-write the latter as W with i
beginning at I, and this equals A. by Our observation in the
preceding paragraph. Thus - f & (A , [ A. It is easy to l
deduce that fk(... A k .. fk (A,) Thus fk(A) -AL,)

E A, and thus ft has a fixed point x in A. By definition of
A, then, is(x) or rs(:-') equals s. QED

V. Corollary: A given infinite binary sequence s is the left or
right signature of a fixed point of f if it i- peric, diC of
period k and if sm(s) < is(q)

Proof: Periodic in-Finite sequences always contain their
shift maximals. Thus all left shifts of s will in fact be
less than or equal to Is(q). From Theorem 4, then, s will
be in S. The result follows from Theorem 5. QED

Before addressing the third of our questions we need to
state the finite seq uence analog of Theorem 4:

Theorem 6: Let s be a k-bit sequence for which rm(s) 7__

I.. ks(q). Then every rotation of s is in S k

Pr-o,f We will show that every rotation s, of s satisfies
." the following properties: if si begins with a 0, s <"

Isk(p); if s, begins with a 1, then s, > rsk(p). By a "' k
basic result of reference 9 it will follow that every i
rotation of s is in Sk. (Lack of, -space prohibits repeating
the proof of this result.) .. "..

Assume, then, that there is some rotation s t o-,s f or
which s = 0 bL b=. ls k(p) or s = 1 b1  b. ... ri; (p).

' Since lsk (p) = lsk-(q) and rsk(p) = 1 1 -k (q) , we have
L in both cases that b, bm ... : s1--(q),

. Now for any

binary seqC.ences z1 and z2 of equal length, and -:r and z of
equal length, z 1  implies z z.. z S etting zL
b, b, ... , = is -i(q), z = 0 or 1 (according to the , P. e
case) and z4  = the kth bit of is(q) yields s. 1 k (q . ."

But s* 1 < rm(s), which by hypothesis is ls q;
Thus we arrive at a contradiction and no -uch rotati,:_Nn s, of
s exi sts. The proof is ,comrLete. DED

Our next result is an important one, both for -kddressinq .% .\
0i"vkstion -: .nd for the dev;:topment to cja 1 .-w in oUr '"

ana1 3i - 4 -haot i c behavi or

.o . . . . .. . .. .." . . . . . . . . . . . . ...._, .. ., ... .-..-, ,. .,- ., _ .. .... -., .,.
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Theorem -7: Let xc b e a f ixed point of fk Then ei ther
Ils (x'_) or rs(x.c,) is periodic of period k. Let s denote t-he
f irst k-b its of th is periodic signature and term i t t h e
per iodic k-sicmiature of xc.There ex-ists x, in the orbit of
x., whose left k.--signature is equal to rm (s). Further,
rm (s) rrn(s) I S~k (q) and, when it is equal to IS: k(q).
ls(q) is in fact periodic and equal to rm(s) rm(s) rm(s) ...

44 a. - .

Proof: Clearly sigUc,) is periodic with period k. If
fig(xc,) is regular then s is equal to sik(x,) and it is
readily apparent that rm(s) Occurs as a subsequence of
~ig N~) If this Subsequence begins for the first time at
Position 0 < in sigx(c,) , then rm(s) is the k-signature of f)

fq isi) Further, sig(xade = rm(s) rm(s) ... Note that
since p, and hence q, does not occur in the orbit .f xc, all1
points in -this orbit (including xct) are less than q. From
the Monotanicity of Signatures Property, then, rm(s) rm.(s)
s(q',) If tis I use (q) there is nothingrthe t

positin j it is sig'.:) thnr )i h -inur e to ?,,,

prove in the si Qr regul ar case; assume that it equals..
1sin(q), then.

Write rm(s) a sbi Thus siq(x ) = ss ta q.. i n..
using Monotonicity of Signatures, sig(x,) ls(q)m. if it
is less than ls(q) we argue as follows. I nts first t2K bits
agree with ls(q) by hypothesis. It must be then that ls(q)
is of the form si si ... s, (n times) z1 , where n 2 , and
where the infinite sequence z, does not begin with si. Now
suppose sig('.') and !s(q) differ for the first time at the
nk+j th bit, with 0 j .:: Let m = nk if n is even, and
(n-l)k if n is odd. Consider L, (sig(xj)) and L.(is(q)). %.

The former is again sig(x 1 ), whereas the latter is z, if n
is even and s, Z1 if n is odd. In both cases (n odd, n
even), an even number of s,'s were deleted and hence sig(x 1 -
" L(s(q)). Since these two sequences differ within the

first 21k bits (as zi does not begin with si), it must be
that the first 2k-:: bits of l(is(q)) are greater than those
of sig('x) = Is-k(q). But this is not possible by Theorem
4; Thus sig(x,) = ls(q) and the latter is periodic and
equal to rm(-) rmn(s)

There iust remains the sgi a (:, i .reQ'ul ar case to
di Lc-uss. Cl ear ly both p and q occur in the orbit of :..-.., .
and because si g <.) is periodic no point greater than q
occurs in xo's orbit. It is straightforward to demonstrate
that ls(q) will be periodic of period k and that either .

r s(xC) or- ls(xc,) will be, depending upon the paritv of
sig(xc,) before the first .... After this "-" the remainder
of both -s(xo) and rs(xc,) is ls(q). Since s is the first k-
bits of this signature it follows that rm(s; must be Isk(n)
by monotonicity of signa-tures. The point " 1 havinq rm(s)
iftz left-signature is q itself, and thus 13s(x1,j. is equal to .%-,
Is(q) , which is thus rm(s) rm(s) ... Note, in narticular,.. i
t hat rm (s) rm(s) i a equal to 1s--'- (q). QED

We use Theorem 7 to .Answer Ouest. on . In fact., we couc-h
the answer as a Coroll 1arv to Jheorem 7: - -

% % -. %,°. - "% .. % - °. " .',• . . ... . - %- - .- .- % .- • - % .. % .. ... • . ,% - .-. .. " " , ." " ."." . . , " . .•., '' N,
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Coroll1ary: Let s be a givyen k--hit binary sequence. Then .'

there is a fixed point of f" with periodic k--signature s if
IFand only if rm(s) -rm (s) 1 ls' ,(q), wi th Is (q) rm r(s)

rms) ... when rm(s) rmn(s) -lk(q).

Pr o of (: From Theorem 7

U.-) Conversely, consider the sequence z S s s (n
times), for any n >1. It is easy to demonstrate that rm.z W

rm(s) rm(s) .. . (n times). It follows from our hypothesis
that rm(z) J S-~k(q). Thus from Theorem 6. z itself is in
5-k. Hence all initial portions of z of length m, m

I ... k-i are in S-. Since this is true for all n 1 it
follows that s s s ... is in S, by Lemma 1. Since the
latter infinite sequence is periodic with period k, we know
by Theorem 5 that there is a fixed point x of fk whose left
or right signature is equal to sa s .. Certainly s is 0j_
x s periodic k--signature. Q!ED

V.4 Signature-Distinct Subbells

Definition 11: A subbell is termed signature-distinct if
sig(x) sig(y) implies x = y. A~ wide class of signature--
distinct subbells have been shown to exist I and include all
those subbel ls which are piecewise stric-tly expansivye, i =e.
for which there exists E 1 such that for all x,y in EQ .p],10

/f ) - (y E /m-y/ and similarly for all x,y in Co ,1].
One consequence of signature-distinctness is that if x is ~ -

not equal to y, then no instance of, siq (-) is equal to an

instance of sig(y) either.

For signature--distinct subbel ls a more powerfu1 form Of
the Corollary to Theorem 7 holdsg

Theorem 0: Let f be signature-distinct and let s be a given
k-bit binary sequence. Then there is a fixed point of f k
with periodic I:-signature s i-f and only if rm (s) rm(s)
ls 2 "'(q) , with the further proviso, in the cas of equality,;
that q is a fixed point Of fW as Well.

Proof: (-A: If such a fixed point exists then rn (s) rm is.'
S(q) from the abov~e Cor ol 11 ary t o Theo ream 7

Furthermore, in the case of equality, ls(q) is periodic with
period [ and is equa-l to rm (s) rm (s) B .. Ey Yheoren 5,
then! there exis ts a f ixed point x of fk whose l eft or rig ht
signature is equa~l to ls n) . Since f is signature-di ~-tnCt
this point x inus t in fact eq~Lual In.

W<-) Conversely, if~ rml.) rm(s) < I s'k(q) the~ result ic--
i mmed iate from the Coo lltary to fheorem 7. If pqi I i

W hol-ds and q in af i x-d poiant of f~ as we l 1I then it a..m,
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to see~ that, -f irist of aill ls(q) is periodic with period k.
and that, secondly, then,' is(q) muist in fact equal %-ns
rn(:s ... Aqcain usinq the Cor-ollar-y to Theorem 7, the

i-cLl follows. QED%

LA.A

%v~
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VI. On Fixed Points ana Their Orders.-'

In this section we turn to characterizing the Z

..... poirt reagrnes of subbell functions, bUildinr upon the
material of section V. Let f be a given subbell in the
di scussi on that f ol I ows.

Definition 12: A finite binary sequence s o- length n I -.
is said to be of order k, 1k < n i- we can write s in the
form s, s1 . . . s (p-times), where .5 is of length k, n

- pk, and s cannot be similarly decomposed.

(Thus a sequence consisting of on.y 1 s or on y 0 i-s of
order 1; the five bit sequence 1(110) is of ,rder f ive and '

the six bit sequence 00C)10 is of order three. .; ' ,-

De-{inition 17: x, is a fi.1<ed Do i tf " F of order k " -
1, if

(i) fk() =- o .

(ii) f(xo) i s different from xo, for j = 1 k-I

Thus a fixed point of order P: first maps into itself after k.
iterations under f. Note that fixed points of order 1 are
simply defined as those points that obey (i) for k = 1. -'

Note also that if x is a fixed point of f and its
"periodic" k-signature is of order k, then x is in f4act of
order k. We state this as a Lemma:

,Lemma 2: If .:x is .a fixed point of fl and its "periodic" k-
-signature is of order- k, then x is of order

'roo-0 By contradiction. SUppos. Is of order n k
Clearly n divides k:, and x is also a fixed point o-F fe. [-o,"z

;know from Theorem 7 .-hat -ither is (.') or ra ) i-= perio.-Ji.-.

of period n. S.,ppo-e' i t . s I s (x). Then 1 s . i - alo
ieriodic of period k, s i n c n di vi ds k . Ths thu -

.' "periodic" k--siqnature of ':: cons i sts iF thi5 c,-iA=. D -I kn .n
copi es of the "per-iodic" nii , . Aatur a o..i -j * mi. i 1nilar- inarJ-
holds if it is r-s( x) that it is periodLc. ii both ,a-s- Then
.he order of the "peric " : ofi ,i r ;c., i s at most n. %
QED

E'very subbel 1 wi 1h peak -a1,,e q e.-..,tP-7,r th 3.r i s
brea.:point11: p has= a (regul ar) fod i t of orderi -  1 , ha n.

*,t.1 11 . . Term t. point h r., t-.,o,r f i:. ed
point of orJer I f f f h,.4 e r i'-a f i ed F,i nt ot
of c'oors * F,-,r al l k, the -- si qra,.tur, of -1 non--f r i . i.
f[ied point i.-s 1 k. , and, b, definition, i-c, in .in,: th,-- c



Scondition q>p can be equivalently phras-d as li (q; 11 J*-

~~we can summari-ze this simple observation as"-

% Lemma 37: 1If Isl(q ;  = 1, then, for all k: > 1, the sequence ...E

, .° m

1 is in 6S . _._

We are motivated to next look: at certain k--bit sequence:;;
containing a single o. The reasons for this will be made
clear below. By imposing a somewhat stronger condition upon
q we have:

Theorem ?: If ls 2 (q) = 10 then, for all k 2 101() I is
in S. .

Froo -: Clearly the Theorem holds for k = 2. Assume then
th-t 1<. 2 Now the conditions of this Theorem ar e
stronger than those of the above Lemma; hence 1 -  is in
S -
3 From Theorem 3, we then have that 0lk-  is in Sk ' ,
since it is clear that il- : ls<i-=(q) as ls(q) begins with
10. .imilarly 

1
-Ik is in .S since 'I k : 1 sk- (q- also.

QED.

The condition ls=(q) = 10 is a fundamental one -for subbell. .,
4since it must hold if any fi'xed poi nts of order qreater than

two are present. Since it is the study of such fixed points
tlfa i o particu,.lar interest here, we will restrict our
attention to such subbells, terming them weI-structured.

"- We n-f -our e need to demonstrate -the above claim.

Theoref-i ii': If Is7(q) is not equal. to 10, then -F has no
i.: .-.- pints of order greater than two.

F: r c._,: We essentially argue by contradiction. lo-kin- at
t ar .iou-,s ways that ls2 (q) can not equal 1C.

Cae I: ls(q) begins with a -

The argument: In this case, q < p. Since a is the peak

value -f f , it follows that for all x in 1. i], f (1, <

. A. suninq that - is a fixed point of order greater than t w o
it must be that F ':,) and f (x) are unequal. I - f -f( ,.) is
loss than - (: , then by the monotonicity -of f on [C,p] and
the above observation tht ranQe (-f) is a sub s et o i p - . it
is immediate that for all j 1, +'(,) < f.(). In other
words, -f -(.) is a decreasin, sequence and thus is not .
fixed point. Contradiction. -,...

One can sirmil arly krgue the case where f7(:..:) is oreater
than -F r(; , d,,-inq that :f-, (x } is -1 ncre :.ino afnd thai:4nd
. h,,s not a -i,:ed point. Aqain .k ,-ontrad ,"tion ari. .

,a_ .2: 1 .(q) begins with 1

" -- ... .- . - . . -.. - , . -. ..- .. - - . .-v . -. -.-:.. -.- - .-, .. .: -.-- -..- .-. v .- - - -. .: -
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The ariUment: Suppose -,i a f i -ed point of. order greater
than two. There are several subcases based upon the form-
that the siqnature ofll x may take. %

:ase 2a: sii(x) contains no 1 's

No iterates of v are greater than p. In particular it
must be that . (,) p or f (x) P .. (.: cannot
equal f -), or it would be a fixed point of order I). We
c-an arQue as in Case I that {f J (.) } is either an increasing
or decreasing sequence, and hence x cannot be a fi,':ed point.

case 2b: siq(x) contains no Os

No i ter-tes of "., are less than p. Let us say -Tor real
nuimbers a~b,and c in IC),I] that b is between a and c if
either a < b : c or c < b < a. It is easy" to prove that if
a ,b, and c are all greater than or equal to p, then if b is.
between a and c, -F (b) is between f (a! and f Cc) 4

(. With the order f xn greater than two, x, f i, and
+2().) ar e all different. Thus one of them is between the

other two. We thus have three possibilities f or case 2b" "

1) If f(xU) is between x and fT2(x) we reason as follokis: if
f (>.) x then from the definition of "between", on the one

hand, fTx) + T2 (x), but with all iterates of x >p, on the
other hand, f (.) > -f(Cx). Contradiction. A similar
contradiction arises if f (x) x .. Thus f(;.) is not between
x and fC)

2) If f 2 (Cx) is between x and f (-) we argue as fo lows: 11-
oL- observation above, for all i > C f -( .) is bet ween
""; (x.' and fi+1 (x Bttt this implies that /f -+.( f. - " -I
< /f -1 -(x)-f' (x)", and hence the di stance between successive -

iterates of . is strictly decreasing. But this seq-uence oT
distances must be periodic i- " s af i "-''d poi nt.

Cont ra d i ct i on.

") I- c  i between -F -) and fT(-.' the :rCILUmnt is i mil ar tio
b that o- possibili-v. 2" ah,:ove. For all .. 1. =i

between + Cx) and f'l("-), and thuS the di staqnce between
"uc-.e5i ve iterates o e I " S -. .- .ct i y' i n crF,-asi n a .3..- L n

.e...adi nq to a contradiction.

c e 2, c.i .cor t.in'a both O'= and . ci

Ti i the a, t and ,mO-. t. nter- sft ! n,_ c .se t ,-r)n ,,.
W -n h.v icH ' vI 1 (q) i,- l. mMi.':t A " n .
b,-Q . n - A I. t.*- 1,! i

!  
in1.57 it be to-1 IE I.;ll- ] ... 1c 1 V,! 4,1 "j~ hr. ,.; ... i i..,4,J ),4 r-, I l 1± 3t 1 !,..-at". -.; T,-,; -- .. - ;j ,r* .c. n, ' -h -; '"

)'e t 1 i , I - n -e a r 1-nc. h, i he,:.)r eoI .1 t -,--
l.eft -rid r h1 ht - n tr-: o , oF : - i tmr t,: .: m,_

.. ... ...... i ,.&_. .Ldli?_•.L #., _ _ Ir . - .A..i m_ ll 2.. , .r_'.o .. ' ._ , _ _ ._ ...................-....................... _....._.... -,-. .- ii_ tl' ,i ,i
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. C j e % I

s(q) =III... Thus no such left or right signature can be

of the form 10... It is easy to argue from this that with
sig(x) periodic of period greater than 2, and of necessity
containinq O's and 1's, this constraint cannot be met.

This completes the proof of the Theorem. QED

Theorem 11: Let f be well-structured. Then f has fixed
points o3 order k,k dd, and greater than or equal to 3 if-
and only if it has a -Fixed point Vo, o+f fk with "periodic_" '4'. '
k-signature equal to o01f- .

Proof: (-) Since the sequence 1 011- is of order k. it
follows that xo is of order k from Lemma 2.

(-> Let yo be a fixed point of order k, k odd, k > 3. Let
s be its "periodic" k-signature, and assume s is not equal
to 101k'. s cannot equal Ok, for if it did, then either
ls(ye) or rs(yo) would be 0C0... (in fact it would be
Is(yo)) and thus yo, and all its iterates Would be ' p. BY_ °.arguing as for "Case I" in the proof of Theorem 10 we

arrive at the conclusion that ye cannot be a fixed point of
order greater than 2, a blatant contradiction. Thus s is 7

not )k. Similarly s cannot be 1 k, for we would have ls(yo) ."
or rs(yc,) = III... and thus ye and all of its iterates would
be > p. By arguing as in "case 2b" in the proof of
Theorem 10 we conclude again that yo is not a fixed point.

Thus s is not 01 or 1 k It it is easy to proveP that
if k is odd and s is different from (k or 1k, then rm(s) >

1 01 k-2. From Theorem 7, rm(s) rm(s) < is k(q) Thus we'
have 101k-201k -  

< is2
k(q) as well. Using Theorem

again, the proof is complete. QED ,

We next prove a result which shows how the presence of
fixed points of certain orders implies the e.'(istence of
fixed points of other orders.

Theorem 12: Let f be well-structured. If f has a fixed
point of order k, k odd, k 1 1, then f has fixed points of
orders k-1,k+l, and k+2.

Proof: Assume f has a fixed point of order k., I:: odd and
greater than 1. From Theorem 11 there is a fixed point 1,a
of fk whose periodic k-signature is 101k-2-. from the
Corollary to Theorem 7, using the rotation maximalitv of
101 k-, we thus have 101k-101k-7 lsk(q).

Consider the sequence 1(-Ik-I. which we will denote b' "'.
31. It is of order k+1 and is itself rotation maximal. If
we can argue that slsi < ls~k 2 (q) it will follow from this
Corollary, that there is a fixed point of fk-1 with periodic
(k+l)-signature si. From Lemma 2 it will follow that this
fixed point is of order k+1.

A?



We do argue this as follows. Look at the leftmost k+2.
bits of s~s1 and of 1(.').~-11- The former is l 0 1 k; the
latter l11k-c). Since k is odd, 1 o' is less than 1 0 1 k-( 0 •"

Thus the leftmost 2k bits of s:si are less than 101(-k01 -  .-..

and thus less than Is~k(q) ; so sis, itself is less than
Is52 2 (q), as desired.

The remainder of the proof is along similar lines. To
obtain the fixed point of order k+2 we look at the sequence

s l =101. It is rotational maximal, of order k:+' and can ,-,

readily be shown to be obey I-5s " ls~k 4 (q) From the ..-

Corollary to Theorem 7, and from Lemma 2, we deduce the
existence of a fixed point of fk 2 which is of order k+2.

To obtain the fixed point of order k-1 we look at the
sequence s . 1 (k-2 ,  This is of order k-i. is rotational
maximal and obeys sms *. 1 s=k-(q). The proof is complete.
QED

Thus when a well-structured subbell has fix ed points of

order k, k odd and 1, it has fixed points of orders k- 0*

1,k+l, and k+2. Since k+2 is odd, we can re-apply Theorem -
12 to deduce the presence of fixed points of orders k+3. and
k+4, and, continuing in this fashion we come to the

m conclusion that if f has fi.-ed points of order kf, A o dd
and ) I., it has fixed points of all orders - ko-I.

In particular, then, it follows that if a well--
structured subbel1 has fixed points of order three it has
fixed points of all orders, since it certainly has the non-
trivial fixed point of order 1. This conclusion is akin to
that derived in reference 4; unlike the results derived
therein, however, our "test" for this chaotic condition is

0. far simpler in the case that f is signature-distinct:

Theorem 13: Let f be an arbitrary well-structured
signature-distinct subbell. Then f has fixed points of all
*rders if and only if

rs - (q) = 1C)

ro (-)f . (-'0 S upp o se the above condi ti on on rs- (q) does; not
hold. We will show that f has no fixed point of olr d e r-
three, contradicting the hypothesis of the Theorem. The
sequence 100 is the largest three bit sequence. I+ r s:2 (q)
does not &equal I100, then, it mus3t be less than it.
Combining this observation with 1s2 -(q) =10. it is immediate
that sig 2-(q) 10 and rs (q) = 17r zr.(q) 101. Thus sia'mtq)
is regular. an. sno ie point of f-1.

The sequence is (q) is shi ft--ma.-imal. since I1- (q
10 1. we t hus ha ve Is,,q (W 101101. We thus deduce th--~ i

there to be one,* it Would follow -from the Coroillzry. to-
ThearQom 7, that 1 v, (q I 1 101, and that,* +LUrther * b~
Theorem 8, that q is a f i.;-ed point of f7-, contrndictinq th'-
above rcnmark:s. But .1. fF has no fi ~'d point j.-4i th per--,J2 7-i

-,... - i

,.•7 77
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signature 101 it has no fixed points of order 7. at all from
Theorem 11. The conclusion: rs (q) = 100.

(c)Suppose that rs:3(q) = 100. If sig:!(q) is reauiar. then
ls--(q) is also 100, and thus 10:1101-.: ls4,(q). -By Theorem
7's Corollary, then, f:3 has a fixed point with three bit F
periodic signature 101. This is clearly a fixed point of
order 3, and thus by our remarks preceding the statement of
this Theorem, f has fixed points of all orders. If si' (q)
is irregular then, since 1s2 (q) = 10 (f is well-structured)I
it Must be that sig:5(q) =10-. Thus q is a fixed point of
f:S, since p maps to q. Further, its order is 3. It then
follows again that f has fixed points of all orders. QED%

M 'e therefore rneed examine only the first three bits o f
the right signature of the peak value q7 of a well-structured
signature-distinct subbell to determine the p r e s e re o f
chaos.

From the viewpoint of economy of computation, we need
only look at how p compares with f p) f(p), and f -(pN. As
a n exampl1e, consider the family of"smerctn"mp
shown in Figure 3. These maps are all signature-distinct
since with a 1/2 they are piecewise strictly ex.pansive.
Further, when a '.--1/2 it is easy to deduce that ls 2(q) = 10;
they are thus well-structured. It is readily demonstrated
that rs--(q) will equal 100 if and only if a >1 (1+sqrt(5))/4,
i.e. chaos will be present when a is in [(i+sqrt(5))/4,1J. Z

VII. IUnimodals and Subbells. Extensions of the Theory.

Let us turn, in this final section, to the case of the
more general unimodal function (Definition 1). Although we
could directly re-ex<amine, result by result, our just
developed theory to see which results generalize to Unimodal -

functions, we pursue a more interesting approach in the
*paragraphs that follow. For lack of- space we focus on

general izing just the key result of this paper --- Theorem %%

Let f be agiven unimodal. with f(()) a, f =)b, C)
a, b K1. and breakpoint p i n (C) , peak value q (Q)
Define the auxiliary map h: [0,1) --> 1/4,77/4] via hk*x)
('2x+ I) /4. Thus h is a linear map. mapping 0 to 1/4 and 1 to
Z/4, The map h-- 1  1 1/4,3/4) - (.) [1) is, of course,
defined as well, and obeys h-1 (y) (4y-l)/2. The reader
will observe that there is nothing "sacred" in the va'luc-
1/4 and Z/44 we have chosen them with the goal of appendin'n
simple "steep linear legs" to the Ullimn-dal -- :1 fAct that
wilit be apparent from the discuAssion below. The reader will

*al -,o :)bserv~e th. :,t w,7. h.AVE- assumed t ha _t b ot h a and b jk

p oi i . e. if Vi ther is, in -fact, () , then >. trai qhtforward -
modi. F i c:...At i on oF the arl)'..mants btmlo'w will1 b e c --k 11 '- f or.

77. N



These cases entail creating a "single-legged" subbell. If
both a and b are () we have the case of the subbell itself,
of course, and there is nothing to discuss.

Consider the mapping f : 10,1] -> [0,1] defined as
follows:

f*(z) = 4h(a)z, if 0 < z < 1/4

= hfh-'(z), if 1/4 < z "c 3/4 e
S.

= 4h(b)<(-z), if 3/4 c z < 1

These various maps are all shown in Figure 4. Note. in -
particular that fO maps [1/4,3/43 into [1/4,3/43. Thus an,
point that gets mapped by fl into 11/4,3/4] becomes
"trapped" there under further iteration. This concept is
central to the results prsented below.

Lemma 4: f is a subbell with breakpoint pl = h(p), and peak
value q = h(q).

Proof: Note first that f is continuous and that f (O) =

f(11) = o. Further, consider the behavior of f- on
[O,h(p)]. h(p) of necessity is > 1/4, since p is 0; it is
also 3/4, since p ,< 1. Thus only the first two equations-%
above apply. For z in [0,1/4], of course, f (z) is strictly
monotone increasing; for z in [1/4,h(p)], h-(z) strictly .
increases from 0 to p; fh-I(z) thus strictly increases crom
a to q, and thus f"(z) strictly increases from h(a) to h(q .
Conclusion: f- is strictly monotone increasing on [O,h(p)].
By similar reasoning f* is strictly monotone decreasing on . V.

[h(p),1]. The Lemma follows. QED

Term this artificially created subbell the associated
.% -.. .

Wubbell of the unimodal f. f' obeys several more -
interesting properties. We begin by noting that the
concepts of fixed points and their orders, although de-fined
for subbells, naturally extend to unimodals as well.

Lemma 5: Suppose that ;- in (0,1) is a Fixed point of f*,
for some k> 0. Then x in fact must be in C1/4,3/41 and,
further, h-(x) is a fixed point of f1. If x is of order
k, then so is h '- I (x). " "

Proof: We first argue that x must be in [1/4,./4]. if not,
there are two possibilities: x is in (0,1/4), or is i .
(3/4,1). In the former case the iterates of i on ,
increase as 4h(a)x, (4hua)) ,  until one of thes value-
leaves the interval (0,1/4). This will hapnen, -nin , .- %

a in (0,1), 4h(a) is in (1,3), and, in particuia:tr,
gre~ter than 1 . When it leavos (0,1/'4) it must thu-., go to .
value in 1/4.,3/4]. It will then be CaptUre'd in [ i4 , .A_.'T
as noted earlier. Thus :. can never r'3tI"n o -A

S%
' '
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is not a fixed point of f-k, for any value of k C). A
similar, but more subtle, argument allows us to conclude
that x is not in (3/4,1).

Points in (3/4,1) of necessity map into (O,h(b)). If x
is in (i-i/16h(b),l) it maps to (0,1/4), and by the argument
above, can never return under subsequent iterations to
(3/4,1). If x is in (3/4,1-1/16h(b)) it maps to (1/4,h(b) ;
but this is a subset of (1/4,3/4) and hence x again is
captured. Conclusion: if such a fixed point of f11 exists
it must be in [1/4,3/4] "* .

The remainder of the proof comes quickly. With
[1/4,3/4] closed under f- we argue as follows: f*k(x) Jab
hfkh-l (x) with x in C1/4,3/4]. Thus if f'k(x) = x. it
follows immediately that fk(h-(x)) = h- 1 (x). That the
orders of .' and h-(x) agree is clear. QED

Corollary: Other than the trivial fixed point of 0, all
other fixed points of f- are in [1/4,3/4] and are images
under h of fixed points of f of the same order. %;

The "converse" to this Lemma also holds and we state it
without proof:

Lemma 6: If x is a fixed point of fk, for some k 0, then
h(x) is a fixed point of f*(x). This fixed point is in
[1/4,3/4] and its order agrees with that of x.

Corollary: f has fixed points of all orders if and only if
f- does, i.e. f is chaotic if and only if f* is.

Proof: Necessity is immediate from Lemma 6. As for
sufficiency we note that all fixed points of f- of order
greater than 1 are in [1/4.3/4] by Lemma 5. and are images
of fixed points of f of the same order. f" has a fixed 0 o
point of order one in 11/4,3/4] also; thus f has a fixed
point of order one. QED

Finally we explore the issue of chaos. The notions of.
signatures, well-structuredness, and sitinature-distinctness
generalize rapidly to unimodals in a straightforward way. .

Theor-em 14: If f is well-structured and signature-distinct

then so is f*. If f is so behaved then f has fixed point:,
of al I orders if and only if rsz(q) 100, where the .

signature is taken with respect to F .

Proof: We begin by noting that for any x in [.1] the f.
signature of x is identical with the f* - si.Inature of h(.x).
Similarly, for x. in [1/4.3/4], the f-signature o'F h*1t.;-', i.s'
identical with the f'-signature of x. Thus if ls (q) i 9
for f it must be that Is1(q ) = 10 for f', and conversel.
In other words f is well-structured if and only if 1" is.
The -oignature-distin utness of f certainly impl Ies th c
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signature-distinctness of fl over the interval 1i/4,3/41.
That f" is signature-distinct over all of [f),I] results

from the following argument.%
Define the capture time of a point x in 10,1] to be the

smallest k >' 0 for which f11*(x) is in [1/4,77/4J. Clearly if
x itself is in [1/4,3/43 its capture time is equal to (J.
Take two arbitary distinct points ,, and xin CC0,13. Let
k1 and k2 denote their respective capture times. Set k
max (k1,vk=). One of two cases occurs. sig(x1 ,) and sig(x, ,
either agree through the first k+1 positions, or they do
not. In the latter case the signatures dif-ter, obviously,
and we are done. In the former case it follows that Y1
ilk (x 1 ) and y2= flk %=) are also distinct (by the strict ~
piecevwise monotonicity of f- and the obvious fact that we
have faithfully tracked pieces together to this point).
Furthermore, all their iterates are in [1/4."'/41, byth
,.Capturing property". By the just deduced signature-
di stictness of faon [1/4,3j/43 then, sig(y1 ) will differ
-from sig(v:2). *

Thus i f f is signature-distinct, f- is. The remainder
of this Theorem follows immediately from the fact that if
rs:7(q) 100 for f, then rsl(ql) -00for -f. Applying
Theorem 13 and the above Corollary completes the proof. Q~ED

VIII. Conclusions ..

Th is paper has presented a var iet,, of r e su L t
concerning the fixed point structure of ce-rtain maps de-fined
over the unit interval. The underlying common thread of the
developed theory has been that of the signature o-f a. point
and of its role in characterizing the ma s orbitail
behavior.

From an expositional point-of-view this siqnature-based
theory is appealing; it is minimally dependent upon adv. nctd_
measure-theoret ic concepts typically f ot.nd int_ tne
literature, and needs no a priori assumptions on func.ti on.11%.l
form Such as differentiability, linearity, or convexitv.

The authors are currently addressing the mosit

-i g n atu re-d is t in ctn e ss. We are, more specifically, eeking

SIgnAtUre-distinctness condition i~s removed, or whether this
condi ti on is indeed necessary. Appropri ate C~OUnterexamp1 es
will be produced in this latter case.

. .0~
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